Skip to main content
Log in

Comparative transcriptome and microbiota analyses provide new insights into the adverse effects of industrial trans fatty acids on the small intestine of C57BL/6 mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To reveal the mechanism that links industrial trans fatty acids (iTFAs) to various chronic diseases, we examined the impact of iTFAs on the local microenvironment of the small intestine (duodenum, jejunum and ileum).

Methods

Forty male 8-week-old mice were fed diets containing one of the following: (1) low soybean oil (LS); (2) high soybean oil (HS); (3) low partially hydrogenated oil (LH), and (4) high partially hydrogenated oil (HH). The analysis of microbiota from small intestinal content was performed by real-time qPCR. The fatty acid composition of small intestine mucosa was measured by GC/MS, and comparative transcriptome of the small intestinal mucosa was analyzed by RNA-sequencing.

Results

The intake of iTFAs changed the fatty acid spectrum of the small intestine mucosa, especially the excessive accumulation of iTFA (mainly elaidic acid). For microbiota, the relative abundance of δ- and γ-proteobacteria, Lactobacillus, Desulfovibrio, Peptostreptococcus and Turicibacter were significantly different in the iTFA diet groups compared to the control group. Based on the identification of differently expressed genes(DEGs) and pathway annotation, comparative transcriptome analysis of the small intestine mucosa revealed obvious overexpression of genes involved in the extracellular matrix (ECM)-receptor interaction and the peroxisome proliferator-activated receptor signaling pathway, which suggests that ECM remodeling and abnormal lipid metabolism may have occurred with iTFA ingestion.

Conclusion

Our research demonstrated multiple adverse effects of iTFA that may have originated from the small intestine. This finding could be to facilitate the development of new strategies to suppress iTFA-related diseases by reversing the adverse effects of iTFA on intestinal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawczynski C, Lorkowski S (2016) Trans-fatty acids and cardiovascular risk: does origin matter? Expert Rev Cardiovasc Ther 14(9):1001–1005. https://doi.org/10.1080/14779072.2016.1199956

    Article  CAS  PubMed  Google Scholar 

  2. Craig-Schmidt MC (2006) World-wide consumption of trans fatty acids. Atheroscler Suppl 7(2):1–4. https://doi.org/10.1016/j.atherosclerosissup.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Engberink MF, Geleijnse JM, Wanders AJ, Brouwer IA (2012) The effect of conjugated linoleic acid, a natural trans fat from milk and meat, on human blood pressure: results from a randomized crossover feeding study. J Hum Hypertens 26(2):127–132. https://doi.org/10.1038/jhh.2010.132

    Article  CAS  PubMed  Google Scholar 

  4. Okada Y, Tsuzuki Y, Ueda T, Hozumi H, Sato S, Hokari R, Kurihara C, Watanabe C, Tomita K, Komoto S, Kawaguchi A, Nagao S, Miura S (2013) Trans fatty acids in diets act as a precipitating factor for gut inflammation? J Gastroenterol Hepatol 28(4):29–32. https://doi.org/10.1111/jgh.12270

    Article  CAS  PubMed  Google Scholar 

  5. Wilczek MM, Olszewski R, Krupienicz A (2017) Trans-fatty acids and cardiovascular disease: urgent need for legislation. Cardiology 138(4):254–258. https://doi.org/10.1159/000479956

    Article  CAS  PubMed  Google Scholar 

  6. van de Vijver LP, Kardinaal AF, Couet C, Aro A, Kafatos A, Steingrimsdottir L, Amorim Cruz JA, Moreiras O, Becker W, van Amelsvoort JM, Vidal-Jessel S, Salminen I, Moschandreas J, Sigfusson N, Martins I, Carbajal A, Ytterfors A, Poppel G (2000) Association between trans fatty acid intake and cardiovascular risk factors in Europe: the TRANSFAIR study. Eur J Clin Nutr 54(2):126–135. https://doi.org/10.1038/sj.ejcn.1600906

    Article  CAS  PubMed  Google Scholar 

  7. Lichtenstein AH (2000) Trans fatty acids and cardiovascular disease risk. Curr Opin Lipidol 11(1):37–42. https://doi.org/10.1097/00041433-200002000-00006

    Article  CAS  PubMed  Google Scholar 

  8. Vinikoor LC, Satia JA, Schroeder JC, Millikan RC, Martin CF, Ibrahim JG, Sandler RS (2009) Associations between trans fatty acid consumption and colon cancer among Whites and African Americans in the North Carolina colon cancer study I. Nutr Cancer 61(4):427–436. https://doi.org/10.1080/01635580802710725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Theodoratou E, McNeill G, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, Porteous M, Dunlop M, Campbell H (2007) Dietary fatty acids and colorectal cancer: a case-control study. Am J Epidemiol 166(2):181–195. https://doi.org/10.1093/aje/kwm063

    Article  PubMed  Google Scholar 

  10. Yu LC (2018) Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci 25(1):79. https://doi.org/10.1186/s12929-018-0483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barlow GM, Yu A, Mathur R (2015) Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract 30(6):787–797. https://doi.org/10.1177/0884533615609896

    Article  CAS  PubMed  Google Scholar 

  12. Poirier H, Degrace P, Niot I, Bernard A, Besnard P (1996) Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem 238(2):368–373. https://doi.org/10.1111/j.1432-1033.1996.0368z.x

    Article  CAS  PubMed  Google Scholar 

  13. Ge Y, Liu W, Tao H, Zhang Y, Liu L, Liu Z, Qiu B, Xu T (2018) Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice. Eur J Nutr. https://doi.org/10.1007/s00394-018-1810-2

    Article  PubMed  Google Scholar 

  14. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27(17):2325–2329. https://doi.org/10.1093/bioinformatics/btr355

    Article  CAS  PubMed  Google Scholar 

  16. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578. https://doi.org/10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53. https://doi.org/10.1038/nbt.2450

    Article  CAS  PubMed  Google Scholar 

  18. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  19. Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163(6):1360–1374. https://doi.org/10.1016/j.cell.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  20. Woolf TB, Tychko M (1998) Simulations of fatty acid-binding proteins. II. Sites for discrimination of monounsaturated ligands. Biophys J 74(2 Pt 1):694–707. https://doi.org/10.1016/S0006-3495(98)73995-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richieri GV, Ogata RT, Kleinfeld AM (1994) Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269(39):23918–23930

    Article  CAS  PubMed  Google Scholar 

  22. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL (2012) IBD-what role do proteobacteria play? Nat Rev Gastroenterol Hepatol 9(4):219–230. https://doi.org/10.1038/nrgastro.2012.14

    Article  CAS  PubMed  Google Scholar 

  23. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503. https://doi.org/10.1016/j.tibtech.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  24. Litvak Y, Byndloss MX, Tsolis RM, Baumler AJ (2017) Dysbiotic proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 39:1–6. https://doi.org/10.1016/j.mib.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  25. Carvalho FA, Koren O, Goodrich JK, Johansson ME, Nalbantoglu I, Aitken JD, Su Y, Chassaing B, Walters WA, Gonzalez A, Clemente JC, Cullender TC, Barnich N, Darfeuille-Michaud A, Vijay-Kumar M, Knight R, Ley RE, Gewirtz AT (2012) Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12(2):139–152. https://doi.org/10.1016/j.chom.2012.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Endo Y, Kamisada S, Fujimoto K, Saito T (2006) Trans fatty acids promote the growth of some Lactobacillus strains. J Gen Appl Microbiol 52(1):29–35

    Article  CAS  PubMed  Google Scholar 

  27. Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med 22(3):190–199. https://doi.org/10.1016/j.molmed.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  28. Zhong Y, Nyman M, Fak F (2015) Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol Nutr Food Res 59(10):2066–2076. https://doi.org/10.1002/mnfr.201500187

    Article  CAS  PubMed  Google Scholar 

  29. Li TT, Tong AJ, Liu YY, Huang ZR, Wan XZ, Pan YY, Jia RB, Liu B, Chen XH, Zhao C (2019) Polyunsaturated fatty acids from microalgae Spirulina platensis modulates lipid metabolism disorders and gut microbiota in high-fat diet rats. Food Chem Toxicol 131:110558. https://doi.org/10.1016/j.fct.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  30. Remely M, Hippe B, Zanner J, Aumueller E, Brath H, Haslberger AG (2016) Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocr Metab Immune Disord Drug Targets 16(2):99–106. https://doi.org/10.2174/1871530316666160831093813

    Article  CAS  PubMed  Google Scholar 

  31. Petrey AC, de la Motte CA (2017) The extracellular matrix in IBD: a dynamic mediator of inflammation. Curr Opin Gastroenterol 33(4):234–238. https://doi.org/10.1097/MOG.0000000000000368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ingle SB, Adgaonkar BD, Ingle CR (2014) Microscopic colitis: Common cause of unexplained nonbloody diarrhea. World J Gastrointest Pathophysiol 5(1):48–53. https://doi.org/10.4291/wjgp.v5.i1.48

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rieder F, Fiocchi C (2009) Intestinal fibrosis in IBD—a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol 6(4):228–235. https://doi.org/10.1038/nrgastro.2009.31

    Article  CAS  PubMed  Google Scholar 

  35. Lau E, Marques C, Pestana D, Santoalha M, Carvalho D, Freitas P, Calhau C (2016) The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutr Metab (Lond) 13:31. https://doi.org/10.1186/s12986-016-0089-7

    Article  CAS  Google Scholar 

  36. Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, Raizada MK (2018) Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 67(8):1555–1557. https://doi.org/10.1136/gutjnl-2017-314759

    Article  CAS  PubMed  Google Scholar 

  37. Her GM, Yeh YH, Wu JL (2004) Functional conserved elements mediate intestinal-type fatty acid binding protein (I-FABP) expression in the gut epithelia of zebrafish larvae. Dev Dyn 230(4):734–742. https://doi.org/10.1002/dvdy.20081

    Article  CAS  PubMed  Google Scholar 

  38. Stoffel W, Holz B, Jenke B, Binczek E, Gunter RH, Kiss C, Karakesisoglou I, Thevis M, Weber AA, Arnhold S, Addicks K (2008) Delta6-desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. EMBO J 27(17):2281–2292. https://doi.org/10.1038/emboj.2008.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Melanson EL, Astrup A, Donahoo WT (2009) The relationship between dietary fat and fatty acid intake and body weight, diabetes, and the metabolic syndrome. Ann Nutr Metab 55(1–3):229–243. https://doi.org/10.1159/000229004

    Article  CAS  PubMed  Google Scholar 

  40. Pan A, Chen M, Chowdhury R, Wu JH, Sun Q, Campos H, Mozaffarian D, Hu FB (2012) alpha-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 96(6):1262–1273. https://doi.org/10.3945/ajcn.112.044040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Da Silva MS, Julien P, Bilodeau JF, Barbier O, Rudkowska I (2017) Trans fatty acids suppress TNF-alpha-Induced inflammatory gene expression in endothelial (HUVEC) and hepatocellular carcinoma (HepG2) cells. Lipids 52(4):315–325. https://doi.org/10.1007/s11745-017-4243-4

    Article  CAS  PubMed  Google Scholar 

  42. Dobrzyn P, Sampath H, Dobrzyn A, Miyazaki M, Ntambi JM (2008) Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart. Am J Physiol Endocrinol Metab 294(2):E357–364. https://doi.org/10.1152/ajpendo.00471.2007

    Article  CAS  PubMed  Google Scholar 

  43. Ikeda J, Ichiki T, Takahara Y, Kojima H, Sankoda C, Kitamoto S, Tokunou T, Sunagawa K (2015) PPARgamma agonists attenuate palmitate-induced ER stress through up-regulation of SCD-1 in macrophages. PLoS ONE 10(6):e0128546. https://doi.org/10.1371/journal.pone.0128546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marchioro L, Hellmuth C, Uhl O, Geraghty AA, O'Brien EC, Horan MK, Donnelly JM, Kirchberg FF, Koletzko B, McAuliffe FM (2019) Associations of maternal and fetal SCD-1 markers with infant anthropometry and maternal diet: findings from the ROLO study. Clin Nutr. https://doi.org/10.1016/j.clnu.2019.08.030

    Article  PubMed  Google Scholar 

  45. Liao C, Li M, Li X, Li N, Zhao X, Wang X, Song Y, Quan J, Cheng C, Liu J, Bode AM, Cao Y, Luo X (2019) Trichothecin inhibits invasion and metastasis of colon carcinoma associating with SCD-1-mediated metabolite alteration. Biochim Biophys Acta Mol Cell Biol Lipids 2019:158540. https://doi.org/10.1016/j.bbalip.2019.158540

    Article  CAS  Google Scholar 

  46. Liu XL, Cao HX, Wang BC, Xin FZ, Zhang RN, Zhou D, Yang RX, Zhao ZH, Pan Q, Fan JG (2017) miR-192-5p regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1. World J Gastroenterol 23(46):8140–8151. https://doi.org/10.3748/wjg.v23.i46.8140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is supported by Key Research and Development Plan of Shandong Province, Grant number: 2018YYSP010; and Special foundation for Taishan Scholars tsqn20161067.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Haiteng Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, Y., Ge, Y. et al. Comparative transcriptome and microbiota analyses provide new insights into the adverse effects of industrial trans fatty acids on the small intestine of C57BL/6 mice. Eur J Nutr 60, 975–987 (2021). https://doi.org/10.1007/s00394-020-02297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02297-y

Keywords

Navigation