Skip to main content
Log in

Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Inulin is a soluble dietary fiber that has been implicated in regulating the intestinal health. Here, we describe a synergetic response of intestinal microbiota and epithelial functions to increased intake of inulin in a porcine model.

Methods

Twenty growing-pigs were randomly allocated to two groups (n = 10) and fed with a basal diet (BD) or BD containing 0.5% inulin (INU) for 21 days.

Results

We show that INU supplementation not only elevated villus height and the abundance of zonula occludens-1 (ZO-1), but also increased acetate and butyrate concentrations in cecum (P < 0.05). Moreover, INU decreased IL-6 and TNFα secretion, and reduced intestinal epithelial cell apoptosis in ileum and cecum (P < 0.05). Interestingly, we observed an elevated 16S rRNA gene copies in cecum after INU ingestion (P < 0.05). INU had no influence on overall diversity, but acutely altered the abundance of specific bacteria. INU decreased the abundance of phylum Proteobacteria in ileum, but increased the phylum Bacteroidetes in the ileum and cecum (P < 0.05). INU significantly elevated the Lactobacillus spp. and Bacteroides spp. in the ileum and cecum, respectively. Importantly, INU elevated the expression levels of GPR43, GLP-2, and ZO-1, but decreased the expression levels of histone deacetylase 1 (HDAC1) and TNFα in the ileum and cecum mucosa (P < 0.05). Moreover, INU also elevated the expression levels of GPR109A and angiopoietin-4 (ANG-4) in the cecum mucosa (P < 0.05).

Conclusions

This study indicated how the intestinal microbiome and epithelium adapt to inulin ingestion, and furthered our understanding of the mechanisms behind the dietary fiber-modulated intestinal microbiota and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All sequencing information has been deposited in the National Center for Biotechnology Information (NCBI) and can be accessed in the Short Read Archie (SRA) under the accession number PRJNA559763.

References

  1. Hamaker BR, Tuncil YE (2014) A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 426:3838–3850

    CAS  PubMed  Google Scholar 

  2. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vader F, Arora T, Hallen A, Martens E, Bjorck I, Backhed F (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 22:971–982

    CAS  PubMed  Google Scholar 

  3. Florowska A, Krygier K, Florowski T, Dluzewska E (2016) Prebiotics as functional food ingredients preventing diet-related diseases. Food Funct 18:2147–2155

    Google Scholar 

  4. Kien CL, Blauwiekel R, Bunn JY, Jetton TL, Frankel WL, Holst JJ (2007) Cecal infusion of bytyrate increases intestinal cell proliferation in piglets. J Nutr 137:916–922

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamashita H, Fujisawa K, Ito E, Idei S, Kawaguchi N, Kimoto M, Hiemori M, Tsuji H (2007) Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Biosci Biochem 71:1236–1243

    CAS  Google Scholar 

  7. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    PubMed  Google Scholar 

  8. Mensink MA, Frijlink HW, van der Voort MK (2015) Inulin, a flexible oligosaccharide Ӏ: review of its physicochemical characteristics. Carbohydr Polym 130:405–419

    CAS  PubMed  Google Scholar 

  9. Niness KR (1406S) Inulin and oligofructose: what are they? J Nutr 129(Suppl. 7):1402S–1406S

    CAS  PubMed  Google Scholar 

  10. Kalala G, Kambashi B, Everaert N, Beckers Y, Richel A, Pachikian B, Neyrinck AM, Delzenne NM, Bindelle J (2017) Characterization of frucatans and dietary fiber profiles in raw and steamed vegetables. Int J Food Sci Nutr 18:1–8

    Google Scholar 

  11. Femia AP, Luceri C, Dolara P, Giannini A, Biggeri A, Salvadori M, Clune Y, Collins KJ, Paglierani M, Caderni G (2002) Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis 23:1953–1960

    CAS  PubMed  Google Scholar 

  12. Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS (2002) Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br J Nutr 87(Suppl. 2):S255–S259

    CAS  PubMed  Google Scholar 

  13. Shukla G, Bhatia R, Sharma A (2016) Prebiotic inulin supplementation modulates the immune response and restores gut morphology in Giardia duodenalis-infected malnourished mice. Parasitol Res 115:4189–4198

    PubMed  Google Scholar 

  14. Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, Verbeke K, Raes J (2017) Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66:1968–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50–57

    CAS  PubMed  Google Scholar 

  16. Yasuda K, Maiorano R, Welch RM, Miller DD, Lei XG (2007) Cecum is the major degradation site of ingested inulin in young pigs. J Nutr 137:2399–2404

    CAS  PubMed  Google Scholar 

  17. National Research Council (2012) Nutrient requirements for swine, 11th edn. National Academy Press, Washington, DC

    Google Scholar 

  18. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC

  19. Lillie RD (1969) Histopathologic technic and practical histochemistry, 3rd edn. McGraw-Hill Boock Co., New York

    Google Scholar 

  20. Franklin M, Mathew A, Vickers J, Clift R (2002) Characterization of microbial populations and volatile fatty acid concentrations in the jejunum, ileum, and cecum of pigs weaned at 17 vs 24 days of age. J Anim Sci 80:2904–2910

    CAS  PubMed  Google Scholar 

  21. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Goron JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Loupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    PubMed  PubMed Central  Google Scholar 

  23. Caporaso JG, Lauber CL, Walters WA, Berg-lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R, Gordon JI (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108(Suppl. 1):4516–4522

    CAS  PubMed  Google Scholar 

  24. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Edgar RC (2013) UPARSE: highly accurate OUT sequences from microbial amplicon reads. Nat Methods 10:996–998

    CAS  PubMed  Google Scholar 

  26. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267

    CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2012) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (− Delta Delta C (T)) method. Methods 25:402–408

    Google Scholar 

  28. Pitta DW, Pinchak E, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, Fulford JD, Wickersham TA, Malinowski DP (2010) Rumen bacterial diversity dynamics associated with changing from Bermuda grass hay to grazed winter wheat diets. Microb Ecol 59:511–522

    PubMed  Google Scholar 

  29. Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with filed-grown cucumber (Cucumis Sativus L.). Microb Ecol 34:210–223

    CAS  PubMed  Google Scholar 

  30. Lattimer JM, Haub MD (2010) Effect of dietary fiber and its components on metabolic health. Nutrients 2:1266–1289

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    CAS  PubMed  Google Scholar 

  32. Van den Abbeele P, Gerard P, Rabot S, Bruneau A, Aidy SEI, Derrien M, Kleerebezem M, Zoetendal EG, Smidt H, Verstrete W, Van de Wiele T, Possemiers S (2011) Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin degradation in humanized rats. Environ Microbiol 13:2667–2680

    PubMed  Google Scholar 

  33. Tian G, Wu XY, Chen DW, Yu B, He J (2017) Adaptation of gut microbiome to different dietary nonstarch polysaccharide fractions in a porcine model. Mol Nutr Food Res 61:1700012

    Google Scholar 

  34. Gunther C, Neumann H, Neurath MF, Becker C (2013) Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 62:1062–1071

    PubMed  Google Scholar 

  35. Argiles JM, Lopez-Soriamo FJ (1999) The role of cytokines in cancer cachexia. Med Res Rev 19:223–248

    CAS  PubMed  Google Scholar 

  36. Roberfroid MB, Van Loo JA, Gibson GR (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr 128:11–19

    CAS  PubMed  Google Scholar 

  37. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald G, Stanton C (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89:1393–1401

    CAS  PubMed  Google Scholar 

  39. Russel WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ (2011) High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93:1062–1072

    Google Scholar 

  40. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi BG, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, Bellis GD, Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN (2014) Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Madigan M, Martinko J (2005) Brock biology of microorganisms, 11th edn. Prentice Hall, New York

  43. Dodd D, Mackie RI, Cann IKO (2011) Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol Microbiol 79:292–304

    CAS  PubMed  Google Scholar 

  44. De Filippo C, Cavalieri D, Di Paola M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children form Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

    PubMed  Google Scholar 

  45. Khan M, Raoult D, Richet H, Lepidi H, La Scola B (2007) Growth promoting effects of single-dose intragastrically administered probiotics in chickens. Br Poult Sci 48:732–735

    CAS  PubMed  Google Scholar 

  46. Guierrez CB, Rodriguez Barbosa JI, Suarez J, Gonzalez OR, Tascon RI, Rodriguez Ferri EF (1995) Efficacy of a variety of disinfectants against Actinobacillus pleuropneumoniae serotype 1. Am J Vet Res 56:1025–1029

    Google Scholar 

  47. Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285:22082–22090

    CAS  PubMed  PubMed Central  Google Scholar 

  48. MacDonald VE, Howe LJ (2009) Histone acetylation: where to go and how to get there. Epigenetics 4:39–43

    Google Scholar 

  49. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Mkenzi CI, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermanns S, Teixeira MM, Moore RJ, Flavell RA, Fagarasan S, Mackay CR (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734

    CAS  PubMed  Google Scholar 

  50. Brown AJ, Goldsworthy SM, Bames AA, Eilert MM, Tcheang L, aniels D, Muir AI, Wigglesworth MJ, inghorn I, Fraser N, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szkeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278: 11312–11319

  51. Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci USA 107:8242–8247

    CAS  PubMed  Google Scholar 

  52. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, Shi H, Robertson K, Munn DH, Liu K (2012) Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol 302:1405–1415

    Google Scholar 

  53. Turgeon N, Blais M, Gaqne JM, Tardif V, Boudreau F, Asselin PN (2013) HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS ONE 6:e73785

    Google Scholar 

  54. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141:769–776

    CAS  PubMed  Google Scholar 

  55. Walsh NA, Yusta B, DaCambra MP, Anini Y, Drucker DJ, Brubaker PL (2003) Glucagon-like peptide-2 receptor activation in the rat intestinal mucosa. Endocrinology 144:4385–4392

    CAS  PubMed  Google Scholar 

  56. Kesler CT, Pereira ER, Cui CH, Nelson GM, Masuck DJ, Baish JW, Padera TP (2015) Aniopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J 29:3668–3677

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Huifen Wang for technical help with the biochemical analysis. This study was supported by the National Natural Science Foundation of China (31972599) and the Development program of Sichuan Province (2018NZDZX0005).

Author information

Authors and Affiliations

Authors

Contributions

JH designed the experiments; WW and HX performed the animal trial and wrote the manuscript; PZ, JY, ZH, JL, and YL participated the biochemical assays; HY revised the manuscript. DC, BY, and XM conceived the experiment. All authors have read and approved the final draft.

Corresponding author

Correspondence to Jun He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Studies involving animals were conducted according to the Regulations for the Administration of Affairs Concerning Experimental Animals (Ministry of Science and Technology, China, revised in June 2004). Sample collection was approved by the Institutional Animal Care and Use Committee of Sichuan Agricultural University, Sichuan, China (no. 20180901).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 31 kb)

Supplementary file 2 (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Xie, H., Chen, D. et al. Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. Eur J Nutr 60, 715–727 (2021). https://doi.org/10.1007/s00394-020-02284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02284-3

Keywords

Navigation