Skip to main content

Advertisement

Log in

Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To explore whether probiotic supplementation could attenuate serum trimethylamine-N-oxide (TMAO) level and impact the intestinal microbiome composition.

Design

Forty healthy males (20–25 years old) were randomized into the probiotic group (1.32 × 1011 CFU live bacteria including strains of Lactobacillus acidophilus, Lactobacillus rhamnosus GG, Bifidobacterium animalis, and Bifidobacterium longum daily) or the control group for 4 weeks. All participants underwent a phosphatidylcholine challenge test (PCCT) before and after the intervention. Serum TMAO and its precursors (TMA, choline and betaine) were measured by UPLC-MS/MS. The faecal microbiome was analyzed by 16S rRNA sequencing.

Results

Serum TMAO and its precursors were markedly increased after the PCCT. No statistical differences were observed in the probiotic and the control group in area under the curve (AUC) (14.79 ± 0.97 μmol/L 8 h vs. 19.17 ± 2.55 μmol/L 8 h, P = 0.106) and the pre- to post-intervention AUC alterations (∆AUC) (− 6.33 ± 2.00 μmol/L 8 h vs. − 0.73 ± 3.04 μmol/L 8 h, P = 0.131) of TMAO; however, higher proportion of participants in probiotic group showed their TMAO decrease after the intervention (78.9% vs. 45.0%, P = 0.029). The abundance of Faecalibacterium prausnitzii (P = 0.043) and Prevotella (P = 0.001) in the probiotic group was significantly increased after the intervention but without obvious differences in α- and β-diversity.

Conclusions

The current probiotic supplementation resulted in detectable change of intestinal microbiome composition but failed to attenuate the serum TMAO elevation after PCCT.

Clinicaltrials.gov Identifier

NCT03292978.

Clinicaltrials.gov website

https://clinicaltrials.gov/ct2/show/NCT03292978.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TMA:

Trimethylamine

TMAO:

Trimethylamine-N-oxide

PCCT:

Phosphatidylcholine challenge test

UPLC–MS:

Ultrahigh-performance liquid chromatography–tandem mass spectrometry

FMO3:

Flavin-containing monooxygenase 3

CVDs:

Cardiovascular diseases

CRF:

Case report form

TBA:

tert-butyl bromoacetate

USDA:

United States Department of Agriculture

ITT:

Intent-to-treat analysis method

ANOVA:

Analysis of variance

NMDS:

Non-metric multi-dimensional scaling

MET:

Metabolic equivalent

References

  1. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, Edwards PA, Hazen SL, Lusis AJ (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17(1):49–60. https://doi.org/10.1016/j.cmet.2012.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fennema D, Phillips IR, Shephard EA (2016) Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44(11):1839–1850. https://doi.org/10.1124/dmd.116.070615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl J Med 368(17):1575–1584. https://doi.org/10.1056/NEJMoa1109400

    Article  CAS  PubMed  Google Scholar 

  4. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165(1):111–124. https://doi.org/10.1016/j.cell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, Wang LJ, Zheng RD, Zhang HW, Ling WH, Zhu HL (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6:19076. https://doi.org/10.1038/srep19076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Obaide MAI, Singh R, Datta P, Rewers-Felkins KA, Salguero MV, Al-Obaidi I, Kottapalli KR, Vasylyeva TL (2017) Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med. https://doi.org/10.3390/jcm6090086

    Article  PubMed  PubMed Central  Google Scholar 

  8. Robinson-Cohen C, Newitt R, Shen DD, Rettie AE, Kestenbaum BR, Himmelfarb J, Yeung CK (2016) Association of FMO3 variants and trimethylamine N-oxide concentration, disease progression, and mortality in CKD patients. PLoS One 11(8):e0161074. https://doi.org/10.1371/journal.pone.0161074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim RB, Morse BL, Djurdjev O, Tang M, Muirhead N, Barrett B, Holmes DT, Madore F, Clase CM, Rigatto C, Levin A (2016) Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int 89(5):1144–1152. https://doi.org/10.1016/j.kint.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  10. Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D (2015) Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer 137(9):2124–2132. https://doi.org/10.1002/ijc.29576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischer LM, daCosta KA, Kwock L, Stewart PW, Lu TS, Stabler SP, Allen RH, Zeisel SH (2007) Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr 85(5):1275–1285. https://doi.org/10.1093/ajcn/85.5.1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackay RJ, McEntyre CJ, Henderson C, Lever M, George PM (2011) Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin Biochem Rev 32(1):33–43

    PubMed  PubMed Central  Google Scholar 

  13. Romano KA, Vivas EI, Amador-Noguez D, Rey FE (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Mbio 6(2):e02481. https://doi.org/10.1128/mBio.02481-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamashita T, Kasahara K, Emoto T, Matsumoto T, Mizoguchi T, Kitano N, Sasaki N, Hirata K (2015) Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases. Circ J 79(9):1882–1890. https://doi.org/10.1253/circj.CJ-15-0526

    Article  CAS  PubMed  Google Scholar 

  15. Prina E, Ranzani OT, Torres A (2015) Community-acquired pneumonia. Lancet 386(9998):1097–1108. https://doi.org/10.1016/s0140-6736(15)60733-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tripolt NJ, Leber B, Triebl A, Kofeler H, Stadlbauer V, Sourij H (2015) Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: an open-label, randomized study. Atherosclerosis 242(1):141–144. https://doi.org/10.1016/j.atherosclerosis.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  17. Boutagy NE, Neilson AP, Osterberg KL, Smithson AT, Englund TR, Davy BM, Hulver MW, Davy KP (2015) Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet. Obesity (Silver Spring) 23(12):2357–2363. https://doi.org/10.1002/oby.21212

    Article  CAS  Google Scholar 

  18. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, Star J, Weljie AM, Flint HJ, Metz DC, Bennett MJ, Li H, Bushman FD, Lewis JD (2016) Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65(1):63–72. https://doi.org/10.1136/gutjnl-2014-308209

    Article  CAS  PubMed  Google Scholar 

  19. Smits LP, Kootte RS, Levin E, Prodan A, Fuentes S, Zoetendal EG, Wang Z, Levison BS, Cleophas MCP, Kemper EM, Dallinga-Thie GM, Groen AK, Joosten LAB, Netea MG, Stroes ESG, de Vos WM, Hazen SL, Nieuwdorp M (2018) Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.008342

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12

    Article  PubMed  Google Scholar 

  21. Kim S, DeRoo LA, Sandler DP (2011) Eating patterns and nutritional characteristics associated with sleep duration. Public Health Nutr 14(5):889–895. https://doi.org/10.1017/S136898001000296X

    Article  PubMed  Google Scholar 

  22. Khalesi S, Sun J, Buys N, Jayasinghe R (2014) Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64(4):897–903. https://doi.org/10.1161/hypertensionaha.114.03469

    Article  CAS  PubMed  Google Scholar 

  23. Raygan F, Ostadmohammadi V, Asemi Z (2018) The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr. https://doi.org/10.1016/j.clnu.2018.07.017

    Article  PubMed  Google Scholar 

  24. Yoon JS, Sohn W, Lee OY, Lee SP, Lee KN, Jun DW, Lee HL, Yoon BC, Choi HS, Chung WS, Seo JG (2014) Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol 29(1):52–59. https://doi.org/10.1111/jgh.12322

    Article  PubMed  Google Scholar 

  25. Vemuri R, Gundamaraju R, Shinde T, Perera AP, Basheer W, Southam B, Gondalia SV, Karpe AV, Beale DJ, Tristram S, Ahuja KDK, Ball M, Martoni CJ, Eri R (2019) Lactobacillus acidophilus DDS-1 modulates intestinal-specific microbiota, short-chain fatty acid and immunological profiles in aging mice. Nutrients. https://doi.org/10.3390/nu11061297

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ji YS, Kim HN, Park HJ, Lee JE, Yeo SY, Yang JS, Park SY, Yoon HS, Cho GS, Franz CM, Bomba A, Shin HK, Holzapfel WH (2012) Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes 3(1):13–22. https://doi.org/10.3920/bm2011.0046

    Article  CAS  PubMed  Google Scholar 

  27. Hoyles L, Jimenez-Pranteda ML, Chilloux J, Brial F, Myridakis A, Aranias T, Magnan C, Gibson GR, Sanderson JD, Nicholson JK, Gauguier D, McCartney AL, Dumas ME (2018) Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome 6(1):73. https://doi.org/10.1186/s40168-018-0461-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Allen SJ, Wareham K, Wang D, Bradley C, Hutchings H, Harris W, Dhar A, Brown H, Foden A, Gravenor MB, Mack D (2013) Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 382(9900):1249–1257. https://doi.org/10.1016/s0140-6736(13)61218-0

    Article  PubMed  Google Scholar 

  29. Verdenelli MC, Cecchini C, Coman MM, Silvi S, Orpianesi C, Coata G, Cresci A, Di Renzo GC (2016) Impact of probiotic SYNBIO((R)) administered by vaginal suppositories in promoting vaginal health of apparently healthy women. Curr Microbiol 73(4):483–490. https://doi.org/10.1007/s00284-016-1085-x

    Article  CAS  PubMed  Google Scholar 

  30. Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, Blevins T, Bennett BJ, O’Connor A, Zeisel SH (2014) Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr 100(3):778–786. https://doi.org/10.3945/ajcn.114.087692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang YXWGY, Pan XQ (2009) China food composition, 2nd edn. Peking University Medical Press, Beijing

    Google Scholar 

  32. USDA Database for the Choline Content of Common Foods, Release 2 (2008). https://www.ars.usda.gov/ARSUserFiles/80400525/Data/Choline/Choln02.pdf

  33. Zhao X, Zeisel SH, Zhang S (2015) Rapid LC-MRM-MS assay for simultaneous quantification of choline, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in human plasma and urine. Electrophoresis 36:2207–2214. https://doi.org/10.1002/elps.201500055

    Article  CAS  PubMed  Google Scholar 

  34. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  35. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol Chapter. https://doi.org/10.1002/9780471729259.mc01e05s27

    Article  Google Scholar 

  36. Holm PI, Bleie O, Ueland PM, Lien EA, Refsum H, Nordrehaug JE, Nygard O (2004) Betaine as a determinant of postmethionine load total plasma homocysteine before and after B-vitamin supplementation. Arterioscler Thromb Vasc Biol 24(2):301–307. https://doi.org/10.1161/01.atv.0000114569.54976.31

    Article  CAS  PubMed  Google Scholar 

  37. Chang Q, Luan Y, Sun F (2011) Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinform 12:118. https://doi.org/10.1186/1471-2105-12-118

    Article  Google Scholar 

  38. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA (2017) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600324

    Article  PubMed  Google Scholar 

  39. Cho CE, Taesuwan S, Malysheva OV, Bender E, Yan J, Caudill MA (2016) Choline and one-carbon metabolite response to egg, beef and fish among healthy young men: a short-term randomized clinical study. Clin Nutr Exp 10:1–11. https://doi.org/10.1016/j.yclnex.2016.10.002

    Article  CAS  Google Scholar 

  40. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2(6):936–943. https://doi.org/10.1038/s41559-018-0519-1

    Article  PubMed  Google Scholar 

  41. Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, Farjalla VF, Doebeli M (2016) High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol 1(1):15. https://doi.org/10.1038/s41559-016-0015

    Article  PubMed  Google Scholar 

  42. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cashman JR, Zhang J (2002) Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation. Drug Metab Dispos 30(10):1043–1052. https://doi.org/10.1124/dmd.30.10.1043

    Article  CAS  PubMed  Google Scholar 

  44. Qiu L, Tao X, Xiong H, Yu J, Wei H (2018) Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct 9(8):4299–4309. https://doi.org/10.1039/c8fo00349a

    Article  CAS  PubMed  Google Scholar 

  45. Hickson M, D’Souza AL, Muthu N, Rogers TR, Want S, Rajkumar C, Bulpitt CJ (2007) Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ 335(7610):80. https://doi.org/10.1136/bmj.39231.599815.55

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lever M, Sizeland PC, Frampton CM, Chambers ST (2004) Short and long-term variation of plasma glycine betaine concentrations in humans. Clin Biochem 37(3):184–190. https://doi.org/10.1016/j.clinbiochem.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  47. Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 70(Suppl 1):S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sitaraman R (2013) Phospholipid catabolism by gut microbiota and the risk of cardiovascular disease. J Med Microbiol 62(Pt 6):948–950. https://doi.org/10.1099/jmm.0.053587-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study sponsors were not involved in the study design, data collection, analysis or interpretation of the results; the writing of the manuscript; or in the decision to submit the manuscript for publication. This study was supported by the National Natural Science Foundation of China (Grant number: 81472966); and the Dietary Nutrition Research and Education Foundation of Danone, China (Grant number: DIC2016-08). Special thanks go to the Danisco Culture for providing the study products in kind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-lian Zhu.

Ethics declarations

Conflict of interest

S.C. and H.-L.Z. designed the research. S.C., G.-C.L. and S.-L.W., P.-Y.C., X.-Y.W., Y.L., J.-A.L., R.-H.Z., Z.-Y.L and D.-M.Z. conducted the research. C.-L.L. created the randomization sequences and performed the masking procedure. S.C. and A.-P.F analyzed data. S.C., D.X.Y. and H.-L.Z. contributed to the interpretation of the results. S.C., P.-P.J., D.X.Y. and H.-L.Z. wrote the paper. H.-L.Z. had primary responsibility for final content. All authors read and approved the final manuscript. All authors have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Jiang, Pp., Yu, D. et al. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial. Eur J Nutr 60, 747–758 (2021). https://doi.org/10.1007/s00394-020-02278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02278-1

Keywords

Navigation