Skip to main content

Association of magnesium intake and vitamin D status with cognitive function in older adults: an analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014

Abstract

Purpose

Reduced cognitive function associated with aging has gained increasing attention as the US population ages. Magnesium plays a critical role in vitamin D biosynthesis and metabolism; and deficiencies in magnesium and vitamin D show associations with poor cognition. However, no study has examined their interaction. This study aimed to evaluate the associations of magnesium intake and serum 25-hydroxyvitamin D (25(OH)D) concentrations, indicating vitamin D status, with cognition, and interaction between these nutrients in older adults.

Methods

Based on the National Health and Nutrition Survey (NHANES) 2011–2014, the study included 2466 participants aged ≥ 60 years who completed the Digit Symbol Substitution Test (DSST) and had data available on serum 25(OH)D and magnesium intake. Cognitive impairment was defined as a DSST score lower than the lowest quartile. Serum 25(OH)D concentrations were measured by HPLC-tandem mass spectrometry.

Results

Higher total magnesium intake was independently associated with higher DSST scores (highest quartile vs lowest: β = 4.34, 95% CI 1.14–7.54). The association of total magnesium intake with high DSST score was primarily observed among women, non-Hispanic whites, physically active participants and those with sufficient vitamin D status, although the interactions were not significant. The odds of cognitive impairment was reduced with increasing intake of total magnesium (p trend < 0.01) and higher level of serum 25(OH)D (p trend = 0.05).

Conclusions

Findings suggest that high magnesium intake alone may improve cognitive function in older adults, and the association may be stronger among subjects with sufficient vitamin D status. Further studies are needed to confirm these findings.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Derby CA, Katz MJ, Lipton RB, Hall CB (2017) Trends in dementia incidence in a birth cohort analysis of the einstein aging study. JAMA Neurol 74(11):1345–1351. https://doi.org/10.1001/jamaneurol.2017.1964

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Glisky EL (2007) Changes in Cognitive Function in Human Aging. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. Frontiers in neuroscience. CRC Press, Boca Raton, FL

    Google Scholar 

  3. 3.

    van der Schaft J, Koek HL, Dijkstra E, Verhaar HJ, van der Schouw YT, Emmelot-Vonk MH (2013) The association between vitamin D and cognition: a systematic review. Ageing Res Rev 12(4):1013–1023. https://doi.org/10.1016/j.arr.2013.05.004

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Vonder Haar C, Peterson TC, Martens KM, Hoane MR (2016) Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies. Brain Res 1640(Pt A):114–129. https://doi.org/10.1016/j.brainres.2015.12.030

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    DeLuca HF (1696S) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689S–1696S. https://doi.org/10.1093/ajcn/80.6.1689S

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans, 8th edn. Available at http://health.gov/dietaryguidelines/2015/guidelines/

  7. 7.

    Liu X, Baylin A, Levy PD (2018) Vitamin D deficiency and insufficiency among US adults: prevalence, predictors and clinical implications. Br J Nutr 119(8):928–936. https://doi.org/10.1017/S0007114518000491

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Costello R, Wallace TC, Rosanoff A (2016) Magnesium Adv Nutr 7(1):199–201. https://doi.org/10.3945/an.115.008524

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Cherbuin N, Kumar R, Sachdev PS, Anstey KJ (2014) Dietary Mineral Intake and Risk of Mild Cognitive Impairment: The PATH through Life Project. Front Aging Neurosci 6:4. https://doi.org/10.3389/fnagi.2014.00004

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Huskisson E, Maggini S, Ruf M (2007) The influence of micronutrients on cognitive function and performance. J Int Med Res 35(1):1–19. https://doi.org/10.1177/147323000703500101

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ozawa M, Ninomiya T, Ohara T, Hirakawa Y, Doi Y, Hata J, Uchida K, Shirota T, Kitazono T, Kiyohara Y (2012) Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: the Hisayama Study. J Am Geriatr Soc 60(8):1515–1520. https://doi.org/10.1111/j.1532-5415.2012.04061.x

    Article  PubMed  Google Scholar 

  12. 12.

    Richard EL, Laughlin GA, Kritz-Silverstein D, Reas ET, Barrett-Connor E, McEvoy LK (2018) Dietary patterns and cognitive function among older community-dwelling adults. Nutrients. https://doi.org/10.3390/nu10081088

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhang Y, Xun P, Wang R, Mao L, He K (2017) Can magnesium enhance exercise performance? Nutrients. https://doi.org/10.3390/nu9090946

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rosanoff A, Weaver CM, Rude RK (2012) Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev 70(3):153–164. https://doi.org/10.1111/j.1753-4887.2011.00465.x

    Article  PubMed  Google Scholar 

  15. 15.

    Reddy V, Sivakumar B (1974) Magnesium-dependent vitamin-D-resistant rickets. Lancet 1(7864):963–965

    CAS  Article  Google Scholar 

  16. 16.

    Hardwick LL, Jones MR, Brautbar N, Lee DB (1991) Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J Nutr 121(1):13–23. https://doi.org/10.1093/jn/121.1.13

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Deng X, Song Y, Manson JE, Signorello LB, Zhang SM, Shrubsole MJ, Ness RM, Seidner DL, Dai Q (2013) Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med 11:187. https://doi.org/10.1186/1741-7015-11-187

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dai Q, Zhu X, Manson JE, Song Y, Li X, Franke AA, Costello RB, Rosanoff A, Nian H, Fan L, Murff H, Ness RM, Seidner DL, Yu C, Shrubsole MJ (2018) Magnesium status and supplementation influence vitamin D status and metabolism: results from a randomized trial. Am J Clin Nutr 108(6):1249–1258. https://doi.org/10.1093/ajcn/nqy274

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pavlovic A, Abel K, Barlow CE, Farrell SW, Weiner M, DeFina LF (2018) The association between serum vitamin d level and cognitive function in older adults: Cooper Center Longitudinal Study. Prev Med 113:57–61. https://doi.org/10.1016/j.ypmed.2018.05.010

    Article  PubMed  Google Scholar 

  20. 20.

    Jorde R, Kubiak J, Svartberg J, Fuskevag OM, Figenschau Y, Martinaityte I, Grimnes G (2019) Vitamin D supplementation has no effect on cognitive performance after four months in mid-aged and older subjects. J Neurol Sci 396:165–171. https://doi.org/10.1016/j.jns.2018.11.020

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Owusu JE, Islam S, Katumuluwa SS, Stolberg AR, Usera GL, Anwarullah AA, Shieh A, Dhaliwal R, Ragolia L, Mikhail MB, Aloia JF (2019) Cognition and vitamin D in Older African-American women-physical performance and osteoporosis prevention with vitamin D in older African Americans Trial and Dementia. J Am Geriatr Soc 67(1):81–86. https://doi.org/10.1111/jgs.15607

    Article  PubMed  Google Scholar 

  22. 22.

    Pettersen JA (2017) Does high dose vitamin D supplementation enhance cognition?: A randomized trial in healthy adults. Exp Gerontol 90:90–97. https://doi.org/10.1016/j.exger.2017.01.019

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK (2014) National health and nutrition examination survey: sample design, 2011–2014. Vital Health Stat 2(162):1–33

    Google Scholar 

  24. 24.

    Hoyer WJ, Stawski RS, Wasylyshyn C, Verhaeghen P (2004) Adult age and digit symbol substitution performance: a meta-analysis. Psychol Aging 19(1):211–214. https://doi.org/10.1037/0882-7974.19.1.211

    Article  PubMed  Google Scholar 

  25. 25.

    Saenger AK, Laha TJ, Bremner DE, Sadrzadeh SM (2006) Quantification of serum 25-hydroxyvitamin D(2) and D(3) using HPLC-tandem mass spectrometry and examination of reference intervals for diagnosis of vitamin D deficiency. Am J Clin Pathol 125(6):914–920. https://doi.org/10.1309/J32U-F7GT-QPWN-25AP

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ahluwalia N, Dwyer J, Terry A, Moshfegh A, Johnson C (2016) Update on NHANES dietary data: focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr 7(1):121–134. https://doi.org/10.3945/an.115.009258

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Moshfegh AJ, Rhodes DG, Baer DJ, Murayi T, Clemens JC, Rumpler WV, Paul DR, Sebastian RS, Kuczynski KJ, Ingwersen LA, Staples RC, Cleveland LE (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr 88(2):324–332. https://doi.org/10.1093/ajcn/88.2.324

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Chen SP, Bhattacharya J, Pershing S (2017) Association of vision loss with cognition in older adults. JAMA Ophthalmol 135(9):963–970. https://doi.org/10.1001/jamaophthalmol.2017.2838

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    NHANES 2011–2012 Demographics Data. CDC/Natonal Center for Health Statistics. https://wwwn.cdc.gov/nchs/nhanes/Search/DataPage.aspx?Component=Demographics&CycleBeginYear=2011. Accessed 14 Febur 2020

  30. 30.

    Liberman K, Forti LN, Beyer I, Bautmans I (2017) The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review. Curr Opin Clin Nutr Metab Care 20:30–53

    Article  Google Scholar 

  31. 31.

    Fritz NE, McCarthy CJ, Adamo DE (2017) Handgrip strength as a means of monitoring progression of cognitive decline—a scoping review. Ageing Res Rev 35:112–123

    Article  Google Scholar 

  32. 32.

    Moheet A, Mangia S, Seaquist ER (2015) Impact of diabetes on cognitive function and brain structure. Ann NY Acad Sci 1353:60–71. https://doi.org/10.1111/nyas.12807

    Article  PubMed  Google Scholar 

  33. 33.

    Forouhi NG, Wareham NJ (2014) Epidemiology of diabetes. Medicine (Abingdon) 42(12):698–702. https://doi.org/10.1016/j.mpmed.2014.09.007

    Article  Google Scholar 

  34. 34.

    Amrein K, Quraishi SA, Litonjua AA, Gibbons FK, Pieber TR, Camargo CA Jr, Giovannucci E, Christopher KB (2014) Evidence for a U-shaped relationship between prehospital vitamin D status and mortality: a cohort study. J Clin Endocrinol Metab 99(4):1461–1469. https://doi.org/10.1210/jc.2013-3481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Durup D, Jorgensen HL, Christensen J, Tjonneland A, Olsen A, Halkjaer J, Lind B, Heegaard AM, Schwarz P (2015) A reverse j-shaped association between serum 25-hydroxyvitamin D and cardiovascular disease mortality: the CopD Study. J Clin Endocrinol Metab 100(6):2339–2346. https://doi.org/10.1210/jc.2014-4551

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    McGrath J, Scragg R, Chant D, Eyles D, Burne T, Obradovic D (2007) No association between serum 25-hydroxyvitamin D3 level and performance on psychometric tests in NHANES III. Neuroepidemiology 29(1–2):49–54. https://doi.org/10.1159/000108918

    Article  PubMed  Google Scholar 

  37. 37.

    Groves NJ, Burne THJ (2017) The impact of vitamin D deficiency on neurogenesis in the adult brain. Neural Regen Res 12(3):393–394. https://doi.org/10.4103/1673-5374.202936

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ibi M, Sawada H, Nakanishi M, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A (2001) Protective effects of 1 alpha,25-(OH)(2)D(3) against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology 40(6):761–771. https://doi.org/10.1016/s0028-3908(01)00009-0

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S, Liu G (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65(2):165–177. https://doi.org/10.1016/j.neuron.2009.12.026

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kirkland AE, Sarlo GL, Holton KF (2018) The role of magnesium in neurological disorders. Nutrients. https://doi.org/10.3390/nu10060730

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Olloquequi J, Cornejo-Cordova E, Verdaguer E, Soriano FX, Binvignat O, Auladell C, Camins A (2018) Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: therapeutic implications. J Psychopharmacol 32(3):265–275. https://doi.org/10.1177/0269881118754680

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Pointillart A, Denis I, Colin C (1995) Effects of dietary vitamin D on magnesium absorption and bone mineral contents in pigs on normal magnesium intakes. Magnes Res 8(1):19–26

    CAS  PubMed  Google Scholar 

  43. 43.

    Carvalho A, Rea IM, Parimon T, Cusack BJ (2014) Physical activity and cognitive function in individuals over 60 years of age: a systematic review. Clin Interv Aging 9:661–682. https://doi.org/10.2147/CIA.S55520

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, Backman L, Hanninen T, Jula A, Laatikainen T, Lindstrom J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385(9984):2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5

    Article  PubMed  Google Scholar 

  45. 45.

    Lehtisalo J, Ngandu T, Valve P, Antikainen R, Laatikainen T, Strandberg T, Soininen H, Tuomilehto J, Kivipelto M, Lindström J (2017) Nutrient intake and dietary changes during a 2-year multi-domain lifestyle intervention among older adults: Secondary analysis of the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) randomised controlled trial. Br J Nutr 118(4):291–302

    CAS  Article  Google Scholar 

  46. 46.

    Rosanoff A, Seelig MS (2004) Comparison of mechanism and functional effects of magnesium and statin pharmaceuticals. J Am Coll Nutr 23(5):501S–505S

    CAS  Article  Google Scholar 

  47. 47.

    Rosanoff A, Dai Q, Shapses SA (2016) Essential nutrient interactions: does low or suboptimal magnesium status interact with vitamin D and/or calcium status? Adv Nutr 7(1):25–43. https://doi.org/10.3945/an.115.008631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Diaz-Venegas C, Downer B, Langa KM, Wong R (2016) Racial and ethnic differences in cognitive function among older adults in the USA. Int J Geriatr Psychiatry 31(9):1004–1012. https://doi.org/10.1002/gps.4410

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Jaeger J (2018) Digit symbol substitution test: the case for sensitivity over specificity in neuropsychological testing. J Clin Psychopharmacol 38(5):513–519. https://doi.org/10.1097/JCP.0000000000000941

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Mitchell AJ (2009) A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J Psychiatr Res 43:411–431

    Article  Google Scholar 

  51. 51.

    Heaney RP (2011) Serum 25-hydroxyvitamin D is a reliable indicator of vitamin D status. Am J Clin Nutr 94:619–620

    CAS  Article  Google Scholar 

  52. 52.

    Zerwekh JE (1091S) Blood biomarkers of vitamin D status. Am J Clin Nutr 87:1087S–1091S

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the investigators, the staff and the participants of NHANES for their valuable contribution.

Funding

Dr. Tao’s effort was partially supported by the National Institute on Minority Health and Health Disparities of the National Institute of Health under Award U54MD006882.

Author information

Affiliations

Authors

Contributions

NCP conducted the statistical analyses and wrote the paper; KE and WC contributed to data interpretation, and the critical review of the manuscript; MHT designed the study, supervise the study process and wrote the paper; and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Meng-Hua Tao.

Ethics declarations

Conflict of interests

No potential conflicts of interests were disclosed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peeri, N.C., Egan, K.M., Chai, W. et al. Association of magnesium intake and vitamin D status with cognitive function in older adults: an analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Eur J Nutr 60, 465–474 (2021). https://doi.org/10.1007/s00394-020-02267-4

Download citation

Keywords

  • Magnesium intake
  • Vitamin D status
  • Cognitive function
  • Older adults