Skip to main content

Advertisement

Log in

Food matrix structure (from Biscuit to Custard) has an impact on folate bioavailability in healthy volunteers

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

We examined the impact of matrix food structure on post-prandial folate bioavailability (and other macronutrients) in human volunteers using a randomized, controlled, crossover experimental design.

Methods

Twelve healthy male volunteers (22.6 ± 0.4 years old) were offered four food models (differing in matrix structure: Custard, Pudding, Sponge cake and Biscuit) to which 1 mg of folic acid was added, according to a randomized, controlled, crossover experimental design. Plasma folates, glucose, insulin, alpha amino nitrogen and triglycerides were measured over the post-prandial period (from T0 to T480 min).

Results

Food matrix structure was capable of altering folate plasma availability. The highest folate availability was observed for pudding and to a lesser extent Sponge cake whereas the lowest was for the two matrices presenting extreme rheological properties: Custard (liquid) (P < 0.05 total AUC) and to a lesser extent Biscuit (hard solid) (P < 0.05, AUC 180 min). The analysis of plasma kinetics of appearance of other nutrients/metabolites helps to understand/explain the lower bioavailability of folates in Custard and Biscuit.

Conclusion

A least overall efficient bio-accessibility of all macronutrients and folic acid is observed in the gut lumen for Biscuit (delayed/incomplete destructuration of biscuit along the digestive tract). On the contrary, the lower folic acid absorption observed with custard does not fit with the rapid plasma appearance of other nutrients and should require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bailey LB, Gregory JF 3rd (1999) Folate metabolism and requirements. J Nutr 129(4):779–782. https://doi.org/10.1093/jn/129.4.779

    Article  CAS  PubMed  Google Scholar 

  2. Naderi N, House JD (2018) Recent developments in folate nutrition. Adv Food Nutr Res 83:195–213. https://doi.org/10.1016/bs.afnr.2017.12.006

    Article  PubMed  Google Scholar 

  3. Ramos MI, Allen LH, Mungas DM, Jagust WJ, Haan MN, Green R, Miller JW (2005) Low folate status is associated with impaired cognitive function and dementia in the Sacramento area Latino study on aging. Am J Clin Nutr 82(6):1346–1352. https://doi.org/10.1093/ajcn/82.6.1346

    Article  CAS  PubMed  Google Scholar 

  4. EFSA (2014) Scientific opinion on Dietary Reference Values for folate. EFSA J 12(11):3893

    Google Scholar 

  5. Achon M, Arrate A, Alonso-Aperte E, Varela-Moreiras G (2011) Plasma folate concentrations after a single dose ingestion of whole and skimmed folic acid fortified milks in healthy subjects. Eur J Nutr 50(2):119–125. https://doi.org/10.1007/s00394-010-0121-z

    Article  CAS  PubMed  Google Scholar 

  6. Prinz-Langenohl R, Bronstrup A, Thorand B, Hages M, Pietrzik K (1999) Availability of food folate in humans. J Nutr 129(4):913–916. https://doi.org/10.1093/jn/129.4.913

    Article  CAS  PubMed  Google Scholar 

  7. Crider KS, Devine O, Qi YP, Yeung LF, Sekkarie A, Zaganjor I, Wong E, Rose CE, Berry RJ (2019) Systematic review and Bayesian meta-analysis of the dose–response relationship between folic acid intake and changes in blood folate concentrations. Nutrients. https://doi.org/10.3390/nu11010071

    Article  PubMed  PubMed Central  Google Scholar 

  8. Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, Rajapakse T, Kaplan GG, Metcalfe A (2016) Global birth prevalence of spina bifida by folic acid fortification status: a systematic review and meta-analysis. Am J Public Health 106(1):e24–34. https://doi.org/10.2105/ajph.2015.302902

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dwyer JT, Wiemer KL, Dary O, Keen CL, King JC, Miller KB, Philbert MA, Tarasuk V, Taylor CL, Gaine PC, Jarvis AB, Bailey RL (2015) Fortification and health: challenges and opportunities. Adv Nutr 6(1):124–131. https://doi.org/10.3945/an.114.007443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel KR, Sobczynska-Malefora A (2017) The adverse effects of an excessive folic acid intake. Eur J Clin Nutr 71(2):159–163. https://doi.org/10.1038/ejcn.2016.194

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds EH (2016) What is the safe upper intake level of folic acid for the nervous system? Implications for folic acid fortification policies. Eur J Clin Nutr 70(5):537–540. https://doi.org/10.1038/ejcn.2015.231

    Article  CAS  PubMed  Google Scholar 

  12. Swedish Council on Health Technology A (2007) SBU systematic review summaries. In: benefits and risks of fortifying flour with folic acid to reduce the risk of neural tube defects: a systematic review. Swedish Council on Health Technology Assesment (SBU) Copyright (c) 2007 by the Swedish council on health technology assessment, Stockholm

  13. Hughes CF, Ward M, Hoey L, McNulty H (2013) Vitamin B12 and ageing: current issues and interaction with folate. Ann Clin Biochem 50(Pt 4):315–329. https://doi.org/10.1177/0004563212473279

    Article  CAS  PubMed  Google Scholar 

  14. Zhang SL, Chen TS, Ma CY, Meng YB, Zhang YF, Chen YW, Zhou YH (2016) Effect of vitamin B supplementation on cancer incidence, death due to cancer, and total mortality: a PRISMA-compliant cumulative meta-analysis of randomized controlled trials. Medicine 95(31):e3485. https://doi.org/10.1097/md.0000000000003485

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dolin CD, Deierlein AL, Evans MI (2018) Folic acid supplementation to prevent recurrent neural tube defects: 4 milligrams is too much. Fetal Diagn Ther 44(3):161–165. https://doi.org/10.1159/000491786

    Article  PubMed  Google Scholar 

  16. Brouwer IA, van Dusseldorp M, West CE, Steegers-Theunissen RP (2001) Bioavailability and bioefficacy of folate and folic acid in man. Nutr Res Rev 14(2):267–294. https://doi.org/10.1079/nrr200126

    Article  CAS  PubMed  Google Scholar 

  17. McKillop DJ, McNulty H, Scott JM, McPartlin JM, Strain JJ, Bradbury I, Girvan J, Hoey L, McCreedy R, Alexander J, Patterson BK, Hannon-Fletcher M, Pentieva K (2006) The rate of intestinal absorption of natural food folates is not related to the extent of folate conjugation. Am J Clin Nutr 84(1):167–173. https://doi.org/10.1093/ajcn/84.1.167

    Article  CAS  PubMed  Google Scholar 

  18. Ohrvik VE, Witthoft CM (2011) Human folate bioavailability. Nutrients 3(4):475–490. https://doi.org/10.3390/nu3040475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chacornac JP, Barnouin J, Houlier ML (1993) Automated micro-determination by transfer analyzer of circulating alpha-amino nitrogen. Reprod Nutr Dev 33(2):99–108

    Article  CAS  Google Scholar 

  20. Ruggeri S, Vahteristo LT, Aguzzi A, Finglas P, Carnovale E (1999) Determination of folate vitamers in food and in Italian reference diet by high-performance liquid chromatography. J Chromatogr A 855(1):237–245

    Article  CAS  Google Scholar 

  21. McNulty H, Pentieva K (2004) Folate bioavailability. Proc Nutr Soc 63(4):529–536

    Article  CAS  Google Scholar 

  22. Finglas PM, Witthoft CM, Vahteristo L, Wright AJ, Southon S, Mellon FA, Ridge B, Maunder P (2002) Use of an oral/intravenous dual-label stable-isotope protocol to determine folic acid bioavailability from fortified cereal grain foods in women. J Nutr 132(5):936–939

    Article  CAS  Google Scholar 

  23. Gregory JF 3rd (1382s) Case study: folate bioavailability. J Nutr 131(4 Suppl):1376s–1382s. https://doi.org/10.1093/jn/131.4.1376S

    Article  CAS  PubMed  Google Scholar 

  24. Carter B, Monsivais P, Drewnowski A (2010) Absorption of folic acid and ascorbic acid from nutrient comparable beverages. J Food Sci 75(9):H289–293. https://doi.org/10.1111/j.1750-3841.2010.01844.x

    Article  CAS  PubMed  Google Scholar 

  25. McNulty H, Scott JM (2008) Intake and status of folate and related B-vitamins: considerations and challenges in achieving optimal status. Br J Nutr 99(Suppl 3):S48–54. https://doi.org/10.1017/s0007114508006855

    Article  CAS  PubMed  Google Scholar 

  26. Pfeiffer CM, Rogers LM, Bailey LB, Gregory JF 3rd (1997) Absorption of folate from fortified cereal-grain products and of supplemental folate consumed with or without food determined by using a dual-label stable-isotope protocol. Am J Clin Nutr 66(6):1388–1397. https://doi.org/10.1093/ajcn/66.6.1388

    Article  CAS  PubMed  Google Scholar 

  27. Arkbage K, Verwei M, Havenaar R, Witthoft C (2003) Bioaccessibility of folic acid and (6S)-5-methyltetrahydrofolate decreases after the addition of folate-binding protein to yogurt as studied in a dynamic in vitro gastrointestinal model. J Nutr 133(11):3678–3683. https://doi.org/10.1093/jn/133.11.3678

    Article  CAS  PubMed  Google Scholar 

  28. Verwei M, Arkbage K, Mocking H, Havenaar R, Groten J (2004) The binding of folic acid and 5-methyltetrahydrofolate to folate-binding proteins during gastric passage differs in a dynamic in vitro gastrointestinal model. J Nutr 134(1):31–37. https://doi.org/10.1093/jn/134.1.31

    Article  CAS  PubMed  Google Scholar 

  29. Sensoy I (2014) A review on the relationship between food structure, processing, and bioavailability. Crit Rev Food Sci Nutr 54(7):902–909. https://doi.org/10.1080/10408398.2011.619016

    Article  CAS  PubMed  Google Scholar 

  30. Lentle RG, Janssen PW (2010) Manipulating digestion with foods designed to change the physical characteristics of digesta. Crit Rev Food Sci Nutr 50(2):130–145. https://doi.org/10.1080/10408390802248726

    Article  CAS  PubMed  Google Scholar 

  31. McClements DJ, Decker EA, Park Y (2009) Controlling lipid bioavailability through physicochemical and structural approaches. Crit Rev Food Sci Nutr 49(1):48–67. https://doi.org/10.1080/10408390701764245

    Article  PubMed  Google Scholar 

  32. Luka Z (2008) Methyltetrahydrofolate in folate-binding protein glycine N-methyltransferase. Vitam Horm 79:325–345. https://doi.org/10.1016/s0083-6729(08)00411-1

    Article  CAS  PubMed  Google Scholar 

  33. Selhub J, Powell GM, Rosenberg IH (1984) Intestinal transport of 5-methyltetrahydrofolate. Am J Physiol 246(5 Pt 1):G515–520. https://doi.org/10.1152/ajpgi.1984.246.5.G515

    Article  CAS  PubMed  Google Scholar 

  34. Bonnet G, Batisse C, Peyron MA, Nicolas E, Hennequin M (2018) Which variables should be controlled when measuring the granulometry of a chewed bolus? A systematic review. J Texture Stud. https://doi.org/10.1111/jtxs.12376

    Article  PubMed  Google Scholar 

  35. Nau F, Nyemb-Diop K, Lechevalier V, Floury J, Serriere C, Stroebinger N, Boucher T, Guerin-Dubiard C, Ferrua MJ, Dupont D, Rutherfurd SM (2019) Spatial-temporal changes in pH, structure and rheology of the gastric chyme in pigs as influenced by egg white gel properties. Food Chem 280:210–220. https://doi.org/10.1016/j.foodchem.2018.12.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J David and M Jarzaguet for technical assistance as well as the staff from UEN (F Laporte, A Caille, N Lyon-Belgy, V Pidou, D Dumas and H Parrot) for assistance during human experiments

Funding

This work was financially supported by Carnot Qualiment, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Savary-Auzeloux.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffière, C., Hiolle, M., Peyron, MA. et al. Food matrix structure (from Biscuit to Custard) has an impact on folate bioavailability in healthy volunteers. Eur J Nutr 60, 411–423 (2021). https://doi.org/10.1007/s00394-020-02258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02258-5

Keywords

Navigation