Skip to main content
Log in

Prevalence of thyroid dysfunction in healthy adults according to the estimated iodine intake in 24-hour urine samples: The SALMEX cohort

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the prevalence of thyroid dysfunction in a cohort of healthy individuals in Mexico City, as well as to investigate the potential associations of these results with their estimated iodine intake (EII) as reflected by their 24-hour urinary iodine excretion (24-h UIE).

Methods

From the SALMEX cohort, 683 adults provided an appropriate 24-h urine sample. Thyroid function tests and thyroid antibody concentrations were determined in the participants’ sera. We analyzed discrepancies between the commonly used urinary parameters to determine the iodine intake status and the performance of thyroglobulin (Tg) as a biomarker of its status in the adult population.

Results

The prevalence of dysthyroidism was high, being similar to other studies. Subclinical hypothyroidism was detected in 5.0% of individuals, clinical hypothyroidism in 1.8% of individuals, and sub-clinical hyperthyroidism in 2.8% of individuals. The median EII was 285 μg/d (IQR 215.0–369.0); 94% of individuals had EII >150 µg/d recommended daily allowance (RDA) in adults. The urinary iodine concentration (UIC) and the UIE had relative biases in their averages of 34.4%. The Tg median was 7.21 ng/mL. The prevalence of increased Tg was 6.15%. There was no correlation between Tg and EII (r= 0.019, p= 0.606).

Conclusions

Thyroid dysfunction was highly prevalent in this population. Our cohort revealed a slight discrepancy between dysthyroidism manifestations and iodine intake markers; the latter represent a population with adequate iodine intake. Further studies are necessary to clearly define the prevalence of thyroid dysfunction as well as the iodine nutritional status in Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoogendoorn EH, Hermus AR, de Vegt F, Ross HA, Verbeek AL, Kiemeney LA, Swinkels DW, Sweep FC, den Heijer M (2006) Thyroid function and prevalence of anti-thyroperoxidase antibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin Chem 52(1):104–11. https://doi.org/10.1373/clinchem.2005.055194

    Article  CAS  PubMed  Google Scholar 

  2. Vanderpump MP (2011) The epidemiology of thyroid disease. Br Med Bull 99:39–51. https://doi.org/10.1093/bmb/ldr030

    Article  PubMed  Google Scholar 

  3. Burek CL, Talor MV (2009) Environmental triggers of autoimmune thyroiditis. J Autoimmun 33(3–4):183–9. https://doi.org/10.1016/j.jaut.2009.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zimmermann MB, Andersson M (2012) Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev 70(10):553–70. https://doi.org/10.1111/j.1753-4887.2012.00528.x

    Article  PubMed  Google Scholar 

  5. Teng W, Shan Z, Teng X, Guan H, Li Y, Teng D, Jin Y, Yu X, Fan C, Chong W, Yang F, Dai H, Yu Y, Li J, Chen Y, Zhao D, Shi X, Hu F, Mao J, Gu X, Yang R, Tong Y, Wang W, Gao T, Li C (2006) Effect of iodine intake on thyroid diseases in China. N Engl J Med 354(26):2783–93. https://doi.org/10.1056/NEJMoa054022

    Article  CAS  PubMed  Google Scholar 

  6. Teng X, Shan Z, Chen Y, Lai Y, Yu J, Shan L, Bai X, Li Y, Li N, Li Z, Wang S, Xing Q, Xue H, Zhu L, Hou X, Fan C, Teng W (2011) More than adequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis: a cross-sectional study based on two Chinese communities with different iodine intake levels. Eur J Endocrinol 164(6):943–50. https://doi.org/10.1530/EJE-10-1041

    Article  CAS  PubMed  Google Scholar 

  7. Camargo RY, Tomimori EK, Neves SC, G S Rubio I, Galrão AL, Knobel M, Medeiros-Neto G (2008) Thyroid and the environment: exposure to excessive nutritional iodine increases the prevalence of thyroid disorders in Sao Paulo. Brazil. Eur J Endocrinol 159(3):293–9. https://doi.org/10.1530/EJE-08-0192

  8. Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, Ovesen L, Jørgensen T (2009) Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid 19(11):1281–6. https://doi.org/10.1089/thy.2009.0094

    Article  CAS  PubMed  Google Scholar 

  9. The Iodine Global Network (2019) Global scorecard of iodine nutrition in 2019 in the general population based on school-age children (SAC) https://www.ign.org/cm_data/Global_Scorecard_MAP_2019_SAC.pdf. Iodine Global Network Webpage. Accessed 24 Oct 2019

  10. Health Minister of Mexico (2003) Modificación a la Norma Oficial Mexicana NOM-040-SSA1-1993, Productos y servicios. Sal yodada y sal yodada fluorada. Especificaciones sanitarias. https://www.salud.gob.mx/unidades/cdi/nom/m040ssa193.html. Accesed 24 Oct 2019

  11. Baloch Z, Carayon P, Conte-Devolx B, Demers LM, Feldt-Rasmussen U, Henry JF, LiVosli VA, Niccoli-Sire P, John R, Ruf J, Smyth PP, Spencer CA, Stockigt JR (2003) Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 13(1):3–126. https://doi.org/10.1089/105072503321086962

    Article  PubMed  Google Scholar 

  12. Colin-Ramirez E, Espinosa-Cuevas A, Miranda-Alatriste PV, Tovar-Villegas VI, Arcand J, Correa-Rotter R (2017) Food Sources of Sodium Intake in an Adult Mexican Population: A Sub-Analysis of the SALMEX Study. Nutrients. https://doi.org/10.3390/nu9080810

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vega-Vega O, Fonseca-Correa JI, Mendoza-De la Garza A, Rincón-Pedrero R, Espinosa-Cuevas A, Baeza-Arias Y, Dary O, Herrero-Bervera B, Nieves-Anaya I, Correa-Rotter R (2018) Contemporary Dietary Intake: Too Much Sodium, Not Enough Potassium, yet Sufficient Iodine: The SALMEX Cohort Results. Nutrients. https://doi.org/10.3390/nu10070816

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kesteloot H, Joossens JV (1996) On the determinants of the creatinine clearance: a population study. J Hum Hypertens 10(4):245–9

    CAS  PubMed  Google Scholar 

  15. European Food Safety Autority (2006) Tolerable upper intake levels for vitamins and minerals. https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf. Accesed 27 June 2019

  16. Institute of Medicine (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. The National Academies Press, Washington https://doi.org/10.17226/10026

  17. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC (2000) The Colorado thyroid disease prevalence study. Arch Intern Med 160(4):526–34. https://doi.org/10.1001/archinte.160.4.526

    Article  CAS  PubMed  Google Scholar 

  18. O'Leary PC, Feddema PH, Michelangeli VP, Leedman PJ, Chew GT, Knuiman M, Kaye J, Walsh JP (2006) Investigations of thyroid hormones and antibodies based on a community health survey: the Busselton thyroid study. Clin Endocrinol (Oxf) 64(1):97–104. https://doi.org/10.1111/j.1365-2265.2005.02424.x

    Article  CAS  Google Scholar 

  19. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE (2002) Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 87(2):489–99. https://doi.org/10.1210/jcem.87.2.8182

    Article  CAS  PubMed  Google Scholar 

  20. Bjoro T, Holmen J, Krüger O, Midthjell K, Hunstad K, Schreiner T, Sandnes L, Brochmann H (2000) Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected population. The Health Study of Nord-Trondelag (HUNT). Eur J Endocrinol 143(5):639–47. https://doi.org/10.1530/eje.0.1430639

    Article  CAS  PubMed  Google Scholar 

  21. Garduño-Garcia Jde J, Alvirde-Garcia U, López-Carrasco G, Padilla Mendoza ME, Mehta R, Arellano-Campos O, Choza R, Sauque L, Garay-Sevilla ME, Malacara JM, Gomez-Perez FJ, Aguilar-Salinas CA (2010) TSH and free thyroxine concentrations are associated with differing metabolic markers in euthyroid subjects. Eur J Endocrinol 163(2):273–8. https://doi.org/10.1530/EJE-10-0312

    Article  CAS  PubMed  Google Scholar 

  22. Guan H, Shan Z, Teng X, Li Y, Teng D, Jin Y, Yu X, Fan C, Chong W, Yang F, Dai H, Yu Y, Li J, Chen Y, Zhao D, Shi X, Hu F, Mao J, Gu X, Yang R, Chen W, Tong Y, Wang W, Gao T, Li C, Teng W (2008) Influence of iodine on the reference interval of TSH and the optimal interval of TSH: results of a follow-up study in areas with different iodine intakes. Clin Endocrinol (Oxf) 69(1):136–41. https://doi.org/10.1111/j.1365-2265.2007.03150.x

    Article  CAS  Google Scholar 

  23. Caldwell KL, Jones R, Hollowell JG (2005) Urinary iodine concentration: United States National Health And Nutrition Examination Survey 2001–2002. Thyroid 15(7):692–9. https://doi.org/10.1089/thy.2005.15.692

    Article  CAS  PubMed  Google Scholar 

  24. Völzke H, Alte D, Kohlmann T, Lüdemann J, Nauck M, John U, Meng W (2005) Reference intervals of serum thyroid function tests in a previously iodine-deficient area. Thyroid 3:279–85. https://doi.org/10.1089/thy.2005.15.279

    Article  Google Scholar 

  25. Institute of Medicine (2000) Dietary Reference Intakes: Applications in Dietary Assessment. Washington, DC: The National Academies Press. https://doi.org/10.17226/9956.

  26. Johner SA, Shi L, Remer T (2010) Higher urine volume results in additional renal iodine loss. Thyroid 20(12):1391–7. https://doi.org/10.1089/thy.2010.0161

    Article  CAS  PubMed  Google Scholar 

  27. Johner SA, Thamm M, Schmitz R, Remer T (2016) Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment. Eur J Nutr 55(3):1275–82. https://doi.org/10.1007/s00394-015-0941-y

    Article  CAS  PubMed  Google Scholar 

  28. Andersen S, Waagepetersen R, Laurberg P (2015) Misclassification of iodine intake level from morning spot urine samples with high iodine excretion among Inuit and non-Inuit in Greenland. Br J Nutr 113(9):1433–40. https://doi.org/10.1017/S0007114515000653

    Article  CAS  PubMed  Google Scholar 

  29. Andersen S, Dehnfeld M, Laurberg P (2015) Ethnicity is import9ant for creatinine excretion among Inuit and Caucasians in Greenland. Scand J Clin Lab Invest 75(1):44–50. https://doi.org/10.3109/00365513.2014.965737

    Article  CAS  PubMed  Google Scholar 

  30. Zimmermann MB, Aeberli I, Andersson M, Assey V, Yorg JA, Jooste P, Jukić T, Kartono D, Kusić Z, Pretell E, San Luis TO, Jr Untoro J, Timmer A (2013) Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100–299 mug/L: a UNICEF/ICCIDD study group report. J Clin Endocrinol Metab 98(3):1271–80. https://doi.org/10.1210/jc.2012-3952

    Article  CAS  PubMed  Google Scholar 

  31. Pearce EN, Caldwell KL (2016) Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am J Clin Nutr 104(Suppl 3):898S–901S. https://doi.org/10.3945/ajcn.115.110395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Carlé A, Pedersen IB, Rasmussen LB, Ovesen L, Jørgensen T (2009) Thyroglobulin as a marker of iodine nutrition status in the general population. Eur J Endocrinol 161(3):475–81. https://doi.org/10.1530/EJE-09-0262

    Article  CAS  PubMed  Google Scholar 

  33. Spencer C, LoPresti J, Fatemi S (2014) How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes 21(5):394–404. https://doi.org/10.1097/MED.0000000000000092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma ZF, Venn BJ, Manning PJ, Cameron CM, Skeaff SA (2018) The sensitivity and specificity of thyroglobulin concentration using repeated measures of urinary iodine excretion. Eur J Nutr 57(4):1313–20. https://doi.org/10.1007/s00394-017-1410-6

    Article  CAS  PubMed  Google Scholar 

  35. Li C, Peng S, Zhang X, Xie X, Wang D, Mao J, Teng X, Shan Z, Teng W (2016) The Urine Iodine to Creatinine as an Optimal Index of Iodine During Pregnancy in an Iodine Adequate Area in China. J Clin Endocrinol Metab 101(3):1290–8. https://doi.org/10.1210/jc.2015-3519

    Article  CAS  PubMed  Google Scholar 

  36. Konig F, Andersson M, Hotz K, Aeberli I, Zimmermann MB (2011) Ten repeat collections for urinary iodine from spot samples or 24-hour samples are needed to reliably estimate individual iodine status in women. J Nutr 141(11):2049–54. https://doi.org/10.3945/jn.111.144071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of P. Chem. Bertha Herrero Bervera from Department of Nephrology and Mineral Metabolism. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Pérez-Díaz.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical standards

his study was approved by the ethics committee and has been conducted in accordance with the ethical standards. All patients provided their informed consent prior to their inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Rebollar, A., Pérez-Díaz, I., Vega-Vega, O. et al. Prevalence of thyroid dysfunction in healthy adults according to the estimated iodine intake in 24-hour urine samples: The SALMEX cohort. Eur J Nutr 60, 399–409 (2021). https://doi.org/10.1007/s00394-020-02254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02254-9

Keywords

Navigation