Lemon juice, but not tea, reduces the glycemic response to bread in healthy volunteers: a randomized crossover trial



The inhibition of enzymes that hydrolyze starch during digestion could constitute an opportunity to slow down the release, and ultimately the uptake, of starch-derived glucose. Simple dietary approaches consisting in pairing starch-rich foods with beverages that have the capacity to inhibit such enzymes could be an effective and easily implementable strategy. The objective of this work was to test the impact of black tea and lemon juice on the glycemic response to bread and subsequent energy intake in healthy adults.


A randomized crossover study was conducted with equal portions of bread (100 g) and 250 ml of water, black tea or lemon juice. Capillary blood glucose concentrations were monitored during 180 min using the finger-prick method. Ad libitum energy intake was assessed 3 h later.


Tea had no effect on the glycemic response. Lemon juice significantly lowered the mean blood glucose concentration peak by 30% (p < 0.01) and delayed it more than 35 min (78 vs. 41 min with water, p < 0.0001). None of the tested beverages had an effect on ad libitum energy intake.


These results are in agreement with previous in vitro studies showing that lowering the pH of a meal can slow down starch digestion through premature inhibition of salivary α-amylase. Furthermore, the effect of lemon juice was similar to what has been repeatedly observed with vinegar and other acidic foods. Including acidic beverages or foods in starchy meals thus appears to be a simple and effective strategy to reduce their glycemic impact.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Area under the curve


Body mass index


Glycemic index


Human salivary α-amylase


Visual analogue scale


  1. 1.

    Stylianopoulos CL (2012) Carbohydrates: Requirements and Dietary Importance. In: Caballero B, Allen LH, Prentice A (eds) Encyclopedia of human nutrition, vol 1, 2nd edn. Academic press, Cambridge, pp 316–321

    Google Scholar 

  2. 2.

    Goñi I, Garcia-Alonso A, Saura-Calixto F (1997) A starch hydrolysis procedure to estimate glycemic index. Nutr Res 17(3):427–437. https://doi.org/10.1016/S0271-5317(97)00010-9

    Article  Google Scholar 

  3. 3.

    Granfeldt Y, Hagander B, Björck I (1995) Metabolic responses to starch in oat and wheat products. On the importance of food structure, incomplete gelatinization or presence of viscous dietary fibre. Eur J Clin Nutr 49(3):189–199

    CAS  PubMed  Google Scholar 

  4. 4.

    Jenkins DJA, Ghafari H, Wolever TMS, Taylor RH, Jenkins AL, Barker HM, Fielden H, Bowling AC (1982) Relationship between rate of digestion of foods and post-prandial glycaemia. Diabetologia 22(6):450–455

    CAS  PubMed  Google Scholar 

  5. 5.

    Bornhorst GM, Singh RP (2012) Bolus formation and disintegration during digestion of food carbohydrates. Compr Rev Food Sci Food Saf 11(2):101–118

    CAS  Google Scholar 

  6. 6.

    Gropper SS, Smith JL (2013) Digestion of Polysaccharides. Advanced nutrition and human metabolism, 6th edn. Cengage Learning, USA, p 70

    Google Scholar 

  7. 7.

    Freitas D, Le Feunteun S, Panouille M, Souchon I (2018) The important role of salivary alpha-amylase in the gastric digestion of wheat bread starch. Food Funct 9(1):200–208. https://doi.org/10.1039/c7fo01484h

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Fried M, Abramson S, Meyer J (1987) Passage of salivary amylase through the stomach in humans. Dig Dis Sci 32(10):1097–1103

    CAS  PubMed  Google Scholar 

  9. 9.

    Salvatore T, Giugliano D (1996) Pharmacokinetic-pharmacodynamic relationships of Acarbose. Clin Pharmacokinet 30(2):94–106

    CAS  PubMed  Google Scholar 

  10. 10.

    Freitas D, Le Feunteun S (2019) Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: unveiling the contribution of human salivary α-amylase. Food Chem 274:566–573

    CAS  PubMed  Google Scholar 

  11. 11.

    Freitas D, Le Feunteun S (2018) Acid induced reduction of the glycaemic response to starch-rich foods: the salivary α-amylase inhibition hypothesis. Food Funct 9(10):5096–5102. https://doi.org/10.1039/C8FO01489B

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Freitas D, Le Feunteun S (2019) Inhibitory effect of black tea, lemon juice, and other beverages on salivary and pancreatic amylases: what impact on bread starch digestion? A dynamic in vitro study. Food Chem. https://doi.org/10.1016/j.foodchem.2019.05.159

    Article  PubMed  Google Scholar 

  13. 13.

    Brighenti F, Castellani G, Benini L, Casiraghi M, Leopardi E, Crovetti R, Testolin G (1995) Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. Eur J Clin Nutr 49(4):242–247

    CAS  PubMed  Google Scholar 

  14. 14.

    Johnston CS, Buller AJ (2005) Vinegar and peanut products as complementary foods to reduce postprandial glycemia. J Am Diet Assoc 105(12):1939–1942

    CAS  PubMed  Google Scholar 

  15. 15.

    Johnston CS, Steplewska I, Long CA, Harris LN, Ryals RH (2010) Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab 56(1):74–79

    CAS  PubMed  Google Scholar 

  16. 16.

    Leeman M, Östman E, Björck I (2005) Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur J Clin Nutr 59(11):1266

    CAS  PubMed  Google Scholar 

  17. 17.

    Liljeberg H, Björck I (1998) Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52(5):368

    CAS  PubMed  Google Scholar 

  18. 18.

    Östman E, Granfeldt Y, Persson L, Björck I (2005) Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr 59(9):983

    PubMed  Google Scholar 

  19. 19.

    Johnston CS, Kim CM, Buller AJ (2004) Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care 27(1):281–282

    PubMed  Google Scholar 

  20. 20.

    Liatis S, Grammatikou S, Poulia K-A, Perrea D, Makrilakis K, Diakoumopoulou E, Katsilambros N (2010) Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. Eur J Clin Nutr 64(7):727

    CAS  PubMed  Google Scholar 

  21. 21.

    Mitrou P, Raptis AE, Lambadiari V, Boutati E, Petsiou E, Spanoudi F, Papakonstantinou E, Maratou E, Economopoulos T, Dimitriadis G (2010) Vinegar decreases postprandial hyperglycemia in patients with type 1 diabetes. Diabetes Care 33(2):e27–e27

    PubMed  Google Scholar 

  22. 22.

    Sugiyama M, Tang A, Wakaki Y, Koyama W (2003) Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. Eur J Clin Nutr 57(6):743

    CAS  PubMed  Google Scholar 

  23. 23.

    Kerimi A, Nyambe-Silavwe H, Gauer JS, Tomás-Barberán FA, Williamson G (2017) Pomegranate juice, but not an extract, confers a lower glycemic response on a high–glycemic index food: randomized, crossover, controlled trials in healthy subjects. Am J Clin Nutr 106(6):1384–1393

    CAS  PubMed  Google Scholar 

  24. 24.

    Bo S, Seletto M, Choc A, Ponzo V, Lezo A, Demagistris A, Evangelista A, Ciccone G, Bertolino M, Cassader M (2017) The acute impact of the intake of four types of bread on satiety and blood concentrations of glucose, insulin, free fatty acids, triglyceride and acylated ghrelin. A randomized controlled cross-over trial. Food Res Int 92:40–47

    CAS  PubMed  Google Scholar 

  25. 25.

    Lappi J, Selinheimo E, Schwab U, Katina K, Lehtinen P, Mykkänen H, Kolehmainen M, Poutanen K (2010) Sourdough fermentation of wholemeal wheat bread increases solubility of arabinoxylan and protein and decreases postprandial glucose and insulin responses. J Cereal Sci 51(1):152–158

    CAS  Google Scholar 

  26. 26.

    Liljeberg H, Björck I (1996) Delayed gastric emptying rate as a potential mechanism for lowered glycemia after eating sourdough bread: studies in humans and rats using test products with added organic acids or an organic salt. Am J Clin Nutr 64(6):886–893

    CAS  PubMed  Google Scholar 

  27. 27.

    Liljeberg HG, Lönner CH, Björck IM (1995) Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J Nutr 125(6):1503–1511

    CAS  PubMed  Google Scholar 

  28. 28.

    Maioli M, Pes GM, Sanna M, Cherchi S, Dettori M, Manca E, Farris GA (2008) Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance. Acta Diabetol 45(2):91–96

    CAS  PubMed  Google Scholar 

  29. 29.

    Scazzina F, Del Rio D, Pellegrini N, Brighenti F (2009) Sourdough bread: Starch digestibility and postprandial glycemic response. J Cereal Sci 49(3):419–421

    CAS  Google Scholar 

  30. 30.

    Hara Y, Honda M (1990) The inhibition of α-amylase by tea polyphenols. Agric Biol Chem 54(8):1939–1945

    CAS  Google Scholar 

  31. 31.

    Kashket S, Paolino V (1988) Inhibition of salivary amylase by water-soluble extracts of tea. Arch Oral Biol 33(11):845–846

    CAS  PubMed  Google Scholar 

  32. 32.

    Kwon Y-I, Apostolidis E, Shetty K (2008) Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem 32(1):15–31

    CAS  Google Scholar 

  33. 33.

    Quesille-Villalobos AM, Torrico JS, Ranilla LG (2013) Phenolic compounds, antioxidant capacity, and in vitro α-amylase inhibitory potential of tea infusions (Camellia sinensis) commercialized in Chile. CyTA J Food 11(1):60–67

    CAS  Google Scholar 

  34. 34.

    Striegel L, Kang B, Pilkenton SJ, Rychlik M, Apostolidis E (2015) Effect of black tea and black tea pomace polyphenols on α-glucosidase and α-amylase inhibition, relevant to type 2 diabetes prevention. Front Nutr 2:3

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Josic J, Olsson AT, Wickeberg J, Lindstedt S, Hlebowicz J (2010) Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: a randomized controlled trial. Nutr J 9(1):63

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Sapper TN, Mah E, Ahn-Jarvis J, McDonald JD, Chitchumroonchokchai C, Reverri EJ, Vodovotz Y, Bruno RS (2016) A green tea-containing starch confection increases plasma catechins without protecting against postprandial impairments in vascular function in normoglycemic adults. Food Funct 7(9):3843–3853

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Blaak E, Antoine JM, Benton D, Björck I, Bozzetto L, Brouns F, Diamant M, Dye L, Hulshof T, Holst J (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13(10):923–984

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Pawlak D, Ebbeling C, Ludwig D (2002) Should obese patients be counselled to follow a low-glycaemic index diet? Yes. Obes Rev 3(4):235–243

    CAS  PubMed  Google Scholar 

  39. 39.

    Raben A (2002) Should obese patients be counselled to follow a low-glycaemic index diet? No. Obes Rev 3(4):245–256

    CAS  PubMed  Google Scholar 

  40. 40.

    Wolever TM, Leung J, Vuksan V, Jenkins AL (2009) Day-to-day variation in glycemic response elicited by white bread is not related to variation in satiety in humans. Appetite 52(3):654–658

    CAS  PubMed  Google Scholar 

  41. 41.

    Pulido JME, Salazar MA (1999) Changes in insulin sensitivity, secretion and glucose effectiveness during menstrual cycle. Arch Med Res 30(1):19–22

    CAS  Google Scholar 

  42. 42.

    Dye L, Blundell J (1997) Menstrual cycle and appetite control: implications for weight regulation. Hum Reprod 12(6):1142–1151

    CAS  PubMed  Google Scholar 

  43. 43.

    Wing RR, Blair EH, Epstein LH, McDermott MD (1990) Psychological stress and glucose metabolism in obese and normal-weight subjects: a possible mechanism for differences in stress-induced eating. Health Psychol 9(6):693–700. https://doi.org/10.1037/0278-6133.9.6.693

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Nater UM, La Marca R, Florin L, Moses A, Langhans W, Koller MM, Ehlert U (2006) Stress-induced changes in human salivary alpha-amylase activity—associations with adrenergic activity. Psychoneuroendocrinology 31(1):49–58

    CAS  PubMed  Google Scholar 

  45. 45.

    Takai N, Yamaguchi M, Aragaki T, Eto K, Uchihashi K, Nishikawa Y (2004) Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch Oral Biol 49(12):963–968

    CAS  PubMed  Google Scholar 

  46. 46.

    Flint A, Raben A, Blundell J, Astrup A (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes 24(1):38–48

    CAS  Google Scholar 

  47. 47.

    Arvaniti K, Richard D, Tremblay A (2000) Reproducibility of energy and macronutrient intake and related substrate oxidation rates in a buffet-type meal. Br J Nutr 83(5):489–495

    CAS  PubMed  Google Scholar 

  48. 48.

    Santos HO, de Moraes WM, da Silva GA, Prestes J, Schoenfeld BJ (2019) Vinegar (acetic acid) intake on glucose metabolism: a narrative review. Clin Nutr ESPEN 32:1–7

    PubMed  Google Scholar 

  49. 49.

    Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2014) How the sourdough may affect the functional features of leavened baked goods. Food Microbiol 37:30–40

    CAS  PubMed  Google Scholar 

  50. 50.

    Lim J, Henry CJ, Haldar S (2016) Vinegar as a functional ingredient to improve postprandial glycemic control—human intervention findings and molecular mechanisms. Mol Nutr Food Res 60(8):1837–1849

    CAS  PubMed  Google Scholar 

  51. 51.

    Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26(7):693–699

    CAS  PubMed  Google Scholar 

  52. 52.

    Petsiou EI, Mitrou PI, Raptis SA, Dimitriadis GD (2014) Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutr Rev 72(10):651–661

    PubMed  Google Scholar 

  53. 53.

    Tong D-P, Zhu K-X, Guo X-N, Peng W, Zhou H-M (2018) The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase. Int J Biol Macromol 107:129–136

    CAS  PubMed  Google Scholar 

  54. 54.

    Yang X, Kong F (2016) Effects of tea polyphenols and different teas on pancreatic α-amylase activity in vitro. LWT-Food Sci Technol 66:232–238

    CAS  Google Scholar 

  55. 55.

    EFSA (2010) Scientific opinion on the substantiation of health claims related to dietary fibre (ID 744, 745, 746, 748, 749, 753, 803, 810, 855, 1415, 1416, 4308, 4330) pursuant to Article 13 (1) of regulation (EC) No 1924/2006. EFSA J 8(10):1735

    Google Scholar 

  56. 56.

    ISO (2010) International Standards Organisation ISO 26642–2010. Food products—determination of the glycaemic index (GI) and recommendation for food classification. International Standards Organisation, Geneva

    Google Scholar 

Download references


We thank the participants for their significant contribution. We thank Anders Sjödin and Thea Toft Hansen (University of Copenhagen) for their help during the preparation of this study. We thank Claire Gaudichon (AgroParisTech), Furio Brighenti (University of Parma), Luca Marciani (University of Nottingham) and Valérie Micard (Montpellier Supagro) for helpful discussions. We thank David Forest for technical help. We thank Amira Halabi and Ousmane Suwareh (INRAE) for their help using R software for statistical analysis. We thank Pascal Bonnarme, head of the GMPA research unit, and Isabelle Souchon and Anne Saint-Eve, team leaders, for their valuable support and technical help.


Daniela Freitas acknowledges funding from an IDEX Paris-Saclay doctoral grant. This research did not receive any other specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Steven Le Feunteun.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freitas, D., Boué, F., Benallaoua, M. et al. Lemon juice, but not tea, reduces the glycemic response to bread in healthy volunteers: a randomized crossover trial. Eur J Nutr 60, 113–122 (2021). https://doi.org/10.1007/s00394-020-02228-x

Download citation


  • Glycemic index
  • Satiety
  • Vinegar
  • Acidity
  • Salivary α-amylase
  • Starch