Skip to main content

Advertisement

Log in

Protective properties of grape-seed proanthocyanidins in human ex vivo acute colonic dysfunction induced by dextran sodium sulfate

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Anti-inflammatory and barrier-protective properties have been attributed to proanthocyanidins in the context of intestinal dysfunction, however little information is available about the impact of these phytochemicals on intestinal barrier integrity and immune response in the human. Here we assessed the putative protective properties of a grape-seed proanthocyanidin extract (GSPE) against dextran sodium sulfate (DSS)-induced acute dysfunction of the human colon in an Ussing chamber system.

Methods

Human proximal and distal colon tissues from colectomized patients were submitted ex vivo for a 30-min preventive GSPE treatment (50 or 200 µg mL−1) followed by 1-h incubation with DSS (12% w v−1). Transepithelial electrical resistance (TEER), permeation of a fluorescently-labeled dextran (FD4) and proinflammatory cytokine release [tumor necrosis factor (TNF)-α and interleukin (IL)-1β] of colonic tissues were determined.

Results

DSS reduced TEER (45–52%) in both the proximal and distal colon; however, significant increments in FD4 permeation (fourfold) and TNF-α release (61%) were observed only in the proximal colon. The preventive GSPE treatment decreased DSS-induced TEER loss (20–32%), FD4 permeation (66–73%) and TNF-α release (22–33%) of the proximal colon dose-dependently. The distal colon was not responsive to the preventive treatment but showed a reduction in IL-1β release below basal levels with the highest GSPE concentration.

Conclusions

Our results demonstrate potential preventive effects of GSPE on human colon dysfunction. Further studies are required to test whether administering GSPE could be a complementary therapeutic approach in colonic dysfunction associated with metabolic disorders and inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50:103

    Article  PubMed Central  Google Scholar 

  2. Hamilton MK, Boudry G, Lemay DG, Raybould HE (2015) Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 308:G840–G851. https://doi.org/10.1152/ajpgi.00029.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342. https://doi.org/10.1038/nri3661

    Article  CAS  PubMed  Google Scholar 

  4. Duan Y, Zeng L, Zheng C et al (2018) Inflammatory links between high fat diets and diseases. Front Immunol 9:2649. https://doi.org/10.3389/fimmu.2018.02649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boutagy NE, McMillan RP, Frisard MI, Hulver MW (2016) Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie 124:11–20. https://doi.org/10.1016/j.biochi.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  6. Fukui H (2016) Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intest Dis 1:135–145. https://doi.org/10.1159/000447252

    Article  PubMed  PubMed Central  Google Scholar 

  7. Randhawa PK, Singh K, Singh N, Jaggi AS (2014) A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 18:279–288. https://doi.org/10.4196/kjpp.2014.18.4.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eichele DD, Kharbanda KK (2017) Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 23:6016–6029. https://doi.org/10.3748/wjg.v23.i33.6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laroui H, Ingersoll SA, Liu HC et al (2012) Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One 7:e32084. https://doi.org/10.1371/journal.pone.0032084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masumoto S, Terao A, Yamamoto Y et al (2016) Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci Rep 6:31208. https://doi.org/10.1038/srep31208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gil-Cardoso K, Ginés I, Pinent M et al (2018) The co-administration of proanthocyanidins and an obesogenic diet prevents the increase in intestinal permeability and metabolic endotoxemia derived to the diet. J Nutr Biochem 62:35–42. https://doi.org/10.1016/j.jnutbio.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  12. Martin DA, Bolling BW (2015) A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct 6:1773–1786. https://doi.org/10.1039/c5fo00202h

    Article  CAS  PubMed  Google Scholar 

  13. Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174:1244–1262. https://doi.org/10.1111/bph.13630

    Article  CAS  PubMed  Google Scholar 

  14. Li X-L, Cai Y-Q, Qin H, Wu Y-J (2008) Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can J Physiol Pharmacol 86:841–849. https://doi.org/10.1139/Y08-089

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y-H, Yang X-L, Wang L et al (2010) Effects of proanthocyanidins from grape seed on treatment of recurrent ulcerative colitis in rats. Can J Physiol Pharmacol 88:888–898. https://doi.org/10.1139/Y10-071

    Article  CAS  PubMed  Google Scholar 

  16. Cheah KY, Bastian SEP, Acott TMV et al (2013) Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Dig Dis Sci 58:970–977. https://doi.org/10.1007/s10620-012-2464-1

    Article  PubMed  Google Scholar 

  17. Terra X, Valls J, Vitrac X et al (2007) Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 55:4357–4365. https://doi.org/10.1021/jf0633185

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y-H, Ge B, Yang X-L et al (2011) Proanthocyanidins from grape seeds modulates the nuclear factor-kappa B signal transduction pathways in rats with TNBS-induced recurrent ulcerative colitis. Int Immunopharmacol 11:1620–1627. https://doi.org/10.1016/j.intimp.2011.05.024

    Article  CAS  PubMed  Google Scholar 

  19. Geraedts MCP, Troost FJ, Tinnemans R et al (2010) Release of satiety hormones in response to specific dietary proteins is different between human and murine small intestinal mucosa. Ann Nutr Metab 56:308–313. https://doi.org/10.1159/000312664

    Article  CAS  PubMed  Google Scholar 

  20. Sjöberg Å, Lutz M, Tannergren C et al (2013) Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci 48:166–180. https://doi.org/10.1016/J.EJPS.2012.10.007

    Article  PubMed  Google Scholar 

  21. Margalef M, Pons Z, Iglesias-Carres L et al (2016) Gender-related similarities and differences in the body distribution of grape seed flavanols in rats. Mol Nutr Food Res 60:760–772. https://doi.org/10.1002/mnfr.201500717

    Article  CAS  PubMed  Google Scholar 

  22. Pizarro TT, Stappenbeck TS, Rieder F et al (2019) Challenges in IBD research: preclinical human IBD mechanisms. Inflamm Bowel Dis 25:S5–S12. https://doi.org/10.1093/ibd/izz075

    Article  PubMed  Google Scholar 

  23. Wallon C, Braaf Y, Wolving M et al (2005) Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand J Gastroenterol 40:586–595. https://doi.org/10.1080/00365520510012235

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz H, Barmeyer C, Gitter AH et al (2006) Epithelial barrier and transport function of the colon in ulcerative colitis. Ann N Y Acad Sci 915:312–326. https://doi.org/10.1111/j.1749-6632.2000.tb05259.x

    Article  Google Scholar 

  25. Geraedts MCP, Troost FJ, De Ridder RJ et al (2012) Validation of Ussing chamber technology to study satiety hormone release from human duodenal specimens. Obesity 20:678–682. https://doi.org/10.1038/oby.2011.104

    Article  CAS  PubMed  Google Scholar 

  26. Viktoria VB, Evgeny LF, Larisa SO et al (2018) Increased paracellular permeability of tumor-adjacent areas in 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Cancer Biol Med 15:251. https://doi.org/10.20892/j.issn.2095-3941.2018.0016

    Article  CAS  Google Scholar 

  27. Thomson A, Smart K, Somerville MS et al (2019) The Ussing chamber system for measuring intestinal permeability in health and disease. BMC Gastroenterol 19:98. https://doi.org/10.1186/s12876-019-1002-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Araki Y, Sugihara H, Hattori T (2006) In vitro effects of dextran sulfate sodium on a Caco-2 cell line and plausible mechanisms for dextran sulfate sodium-induced colitis. Oncol Rep 16:1357–1362

    CAS  PubMed  Google Scholar 

  29. Zhao H, Zhang H, Wu H et al (2012) Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterol 12:57. https://doi.org/10.1186/1471-230X-12-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao H, Yan R, Zhou X et al (2016) Hydrogen sulfide improves colonic barrier integrity in DSS-induced inflammation in Caco-2 cells and mice. Int Immunopharmacol 39:121–127. https://doi.org/10.1016/j.intimp.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  31. Van Dijk APM, Keuskamp ZJ, Wilson JHP, Zijlstra FJ (1995) Sequential release of cytokines, lipid mediators and nitric oxide in experimental colitis. Mediat Inflamm 4:186–190. https://doi.org/10.1155/S0962935195000305

    Article  CAS  Google Scholar 

  32. Nagib MM, Tadros MG, Elsayed MI, Khalifa AE (2013) Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats. Toxicol Appl Pharmacol 271:106–113. https://doi.org/10.1016/j.taap.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  33. Ruder B, Atreya R, Becker C (2019) Tumour necrosis factor alpha in intestinal homeostasis and gut related diseases. Int J Mol Sci. https://doi.org/10.3390/ijms20081887

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kitajima S, Takuma S, Morimoto M (1999) Tissue distribution of dextran sulfate sodium (DSS) in the acute phase of murine DSS-induced colitis. J Vet Med Sci 61:67–70. https://doi.org/10.1292/jvms.61.67

    Article  CAS  PubMed  Google Scholar 

  35. Smythies LE, Sellers M, Clements RH et al (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bactericidal activity. J Clin Invest 115:66. https://doi.org/10.1172/JCI19229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kamada N, Hisamatsu T, Okamoto S et al (2008) Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest 118:2269–2280. https://doi.org/10.1172/JCI34610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roulis M, Armaka M, Manoloukos M et al (2011) Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology. Proc Natl Acad Sci U S A 108:5396–5401. https://doi.org/10.1073/pnas.1007811108

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gil-Cardoso K, Comitato R, Ginés I et al (2019) Protective effect of proanthocyanidins in a rat model of mild intestinal inflammation and impaired intestinal permeability induced by LPS. Mol Nutr Food Res 63:1800720. https://doi.org/10.1002/mnfr.201800720

    Article  CAS  Google Scholar 

  39. Gil-Cardoso K, Ginés I, Pinent M et al (2017) Chronic supplementation with dietary proanthocyanidins protects from diet-induced intestinal alterations in obese rats. Mol Nutr Food Res 61:1601039. https://doi.org/10.1002/mnfr.201601039

    Article  CAS  Google Scholar 

  40. González-Quilen C, Gil-Cardoso K, Ginés I et al (2019) Grape-seed proanthocyanidins are able to reverse intestinal dysfunction and metabolic endotoxemia induced by a cafeteria diet in wistar rats. Nutrients. https://doi.org/10.3390/nu11050979

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu H, Luo T, Li YM et al (2018) Granny Smith apple procyanidin extract upregulates tight junction protein expression and modulates oxidative stress and inflammation in lipopolysaccharide-induced Caco-2 cells. Food Funct 9:3321–3329. https://doi.org/10.1039/c8fo00525g

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Yang X, Cai Y et al (2011) Proanthocyanidins from grape seeds modulate the NF-κB signal transduction pathways in rats with TNBS-induced ulcerative colitis. Molecules 16:6721–6731. https://doi.org/10.3390/molecules16086721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ginés I, Gil-Cardoso K, Serrano J et al (2018) Effects of an intermittent grape-seed proanthocyanidin (GSPE) treatment on a cafeteria diet obesogenic challenge in rats. Nutrients 10:315. https://doi.org/10.3390/nu10030315

    Article  CAS  PubMed Central  Google Scholar 

  44. Siegmund B, Lehr H-A, Fantuzzi G, Dinarello CA (2001) IL-1 -converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci 98:13249–13254. https://doi.org/10.1073/pnas.231473998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanz-Pamplona R, Berenguer A, Cordero D et al (2014) Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. Mol Cancer 13:46. https://doi.org/10.1186/1476-4598-13-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Monagas M, Urpi-Sarda M, Sánchez-Patán F et al (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1:233–253

    Article  CAS  PubMed  Google Scholar 

  47. Margalef M, Pons Z, Bravo FI et al (2015) Plasma kinetics and microbial biotransformation of grape seed flavanols in rats. J Funct Foods 12:478–488. https://doi.org/10.1016/j.jff.2014.12.007

    Article  CAS  Google Scholar 

  48. Mena P, Bresciani L, Brindani N et al (2019) Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 36:714–752

    Article  CAS  PubMed  Google Scholar 

  49. Wiese S, Esatbeyoglu T, Winterhalter P et al (2015) Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans. Mol Nutr Food Res 59:610–621. https://doi.org/10.1002/mnfr.201400422

    Article  CAS  PubMed  Google Scholar 

  50. Castello F, Costabile G, Bresciani L et al (2018) Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch Biochem Biophys 646:1–9. https://doi.org/10.1016/j.abb.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  51. Sano A (2017) Safety assessment of 4-week oral intake of proanthocyanidin-rich grape seed extract in healthy subjects. Food Chem Toxicol 108:519–523. https://doi.org/10.1016/j.fct.2016.11.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Spanish Ministerio de Economía y Competitividad, Grants AGL2014-55347-R, AGL2017-83477-R, and 2014LINE-06 grant from the URV-Banco Santander. C. González-Quilen received financial support through a FI-AGAUR grant from the Generalitat de Catalunya, C. Grau-Bové is student fellow in the Martí i Franquès program of the Universitat Rovira i Virgili, Tarragona, Spain. M. Pinent and X. Terra are Serra-Húnter fellows at the Universitat Rovira i Virgili, Tarragona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Beltrán-Debón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Quilen, C., Grau-Bové, C., Jorba-Martín, R. et al. Protective properties of grape-seed proanthocyanidins in human ex vivo acute colonic dysfunction induced by dextran sodium sulfate. Eur J Nutr 60, 79–88 (2021). https://doi.org/10.1007/s00394-020-02222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02222-3

Keywords

Navigation