Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: meta-analyses of randomized clinical trials



Vitamin C (ascorbic acid) seems to attenuate the overproduction of reactive species during and after exercises. Yet, no meta-analysis has summarized the magnitude of this effect. The objective of this study was to systematically review the effects of vitamin C supplementation on oxidative stress, inflammatory markers, damage, soreness, and the musculoskeletal functionality after a single bout of exercise.


Major electronic databases were searched, from inception to September 2019, for placebo-controlled randomized clinical trials (RCTs) that evaluated the effects of vitamin C supplementation on oxidative stress parameters, inflammation markers, muscle damage, muscle soreness, and muscle functionality after a single bout of exercise in healthy volunteers. Random-effects modelling was used to compare mean changes from pre- to postexercise in participants that were supplemented with vitamin C versus placebo. Data were reported as standard mean difference (SMD) and 95% confidence interval (CI).


A total of 18 RCTs, accounting for 313 participants (62% males, median age = 24 years) were included. Vitamin C supplementation reduced lipid peroxidation immediately (SMD = − 0.488; 95% CI = − 0.888 to − 0.088), 1 h (SMD = − 0.521; 95% CI = − 0.911 to − 0.131) and between 1 and 2 h (SMD = − 0.449; 95% CI = − 0.772 to − 0.126) following exercise. Exercise induced interleukin-6 (IL-6) response was attenuated 2 h (SMD = − 0.764; 95% CI = − 1.279 to − 0.248) and between 1 and 2 h (SMD = − 0.447; 95% CI = − 0.828 to − 0.065) after exercise. No effects of vitamin C supplementation were found on creatine kinase (CK), C-reactive protein (CRP), cortisol levels, muscle soreness, and muscle strength.


Vitamin C supplementation attenuates the oxidative stress (lipid peroxidation) and inflammatory response (IL-6) to a single bout of exercise.


PROSPERO (CRD42018094222).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184. https://doi.org/10.1016/j.cmet.2012.12.012

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Heinonen I, Kalliokoski KK, Hannukainen JC et al (2014) Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology 29:421–436. https://doi.org/10.1152/physiol.00067.2013

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Schuch FB, Vancampfort D, Firth J et al (2018) Physical activity and incident depression: a meta-analysis of prospective cohort studies. Am J Psychiatry 175:631–648. https://doi.org/10.1176/appi.ajp.2018.17111194

    Article  PubMed  Google Scholar 

  4. 4.

    Schuch FB, Stubbs B, Meyer J et al (2019) Physical activity protects from incident anxiety: a meta-analysis of prospective cohort studies. Depress Anxiety. https://doi.org/10.1002/da.22915

    Article  PubMed  Google Scholar 

  5. 5.

    Pedersen BK, Saltin B (2015) Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25:1–72. https://doi.org/10.1111/sms.12581

    Article  PubMed  Google Scholar 

  6. 6.

    Garber CE, Blissmer B, Deschenes MR et al (2011) American College of Sports Medicine. Quantity and quality of exercise for developing and maintaining neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sport Exerc 43:1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb

    Article  Google Scholar 

  7. 7.

    Powers SK, Nelson WB, Hudson MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51:942–950. https://doi.org/10.1016/j.freeradbiomed.2010.12.009

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Teixeira ADO, da Silva Paulitsch F, Umpierre MDM et al (2014) Inflammatory response after session of resistance exercises in untrained volunteers. Acta Sci 37:31–39. https://doi.org/10.4025/actascihealthsci.v37i1.24149

    CAS  Article  Google Scholar 

  9. 9.

    Smith LL (2000) Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 32:317–331. https://doi.org/10.1097/00005768-200002000-00011

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276. https://doi.org/10.1152/physrev.00031.2007.Exercise-Induced

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Magal M, Dumke CL, Urbiztondo ZG et al (2010) Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. J Sports Sci 28:257–266. https://doi.org/10.1080/02640410903440892

    Article  PubMed  Google Scholar 

  12. 12.

    Cheung K, Hume PA, Maxwell L (2003) Delayed onset muscle soreness treatment strategies and performance factors karoline. Sport Med 33:145–164

    Article  Google Scholar 

  13. 13.

    Peternelj T-T, Coombes JS (2011) Antioxidant supplementation during exercise training: beneficial or detrimental? Sport Med 41:1043–1069. https://doi.org/10.2165/11594400-000000000-00000

    Article  Google Scholar 

  14. 14.

    Howatson G, van Someren KA (2008) The prevention and treatment of exercise-induced muscle damage. Sport Med 38:483–503. https://doi.org/10.2165/00007256-200838060-00004

    Article  Google Scholar 

  15. 15.

    Yavari A, Javadi M, Mirmiran P, Bahadoran Z (2015) Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med 6:e24898. https://doi.org/10.5812/asjsm.24898

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kawamura T, Muraoka I (2018) Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants 7:119. https://doi.org/10.3390/antiox7090119

    CAS  Article  PubMed Central  Google Scholar 

  17. 17.

    Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sport Med 37:737–763

    Article  Google Scholar 

  18. 18.

    Poulab E, Sajedinia H, Hafezi F et al (2015) The effect of a four-week acute vitamin C supplementation on the markers of oxidative stress and inflammation following eccentric exercise in active men. Int J Basic Sci Appl Res 4:190–195

    Google Scholar 

  19. 19.

    Davison G, Gleeson M (2007) The effects of acute vitamin C supplementation on cortisol, interleukin-6, and neutrophil responses to prolonged cycling exercise. Eur J Sport Sci 7:15–25. https://doi.org/10.1080/17461390701197734

    Article  Google Scholar 

  20. 20.

    Thompson D, Williams C, McGregor SJ et al (2001) Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Exerc Metab 11:466–481

    CAS  Article  Google Scholar 

  21. 21.

    Bohlooli S, Rahmani-Nia F, Babaei P, Nakhostin-Roohi B (2012) Influence of vitamin C moderate dose supplementation on exercise-induced lipid peroxidation, muscle damage and inflammation. Med dello Sport 65:187–197

    Google Scholar 

  22. 22.

    Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54. https://doi.org/10.1016/S0300-483X(03)00151-3

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Candia-luján R, Fernández JADP, Moreira OC (2015) ¿Son efectivos los suplementos antioxidantes en la disminución del dolor muscular tardío? Una revisión sistemática. Nutr Hosp 31:32–45. https://doi.org/10.3305/nh.2015.31.1.8171

    Article  Google Scholar 

  24. 24.

    Ranchordas MK, Rogerson D, Soltani H, Costello JT (2018) Antioxidants for preventing and reducing muscle soreness after exercise: a Cochrane systematic review. Br J Sports Med. https://doi.org/10.1136/bjsports-2018-099599

    Article  PubMed  Google Scholar 

  25. 25.

    Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Higgins JPT, Green S (eds) (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. Cochrane Collab. https://www.handbook.cochrane.org

  27. 27.

    Haynes RB, Mckibbon KA, Wilczynski NL et al (2005) Optimal search strategies for retrieving scientifically strong studies of treatment from Medline: analytical survey. BMJ 13:2–7. https://doi.org/10.1136/bmj.38446.498542.8F

    Article  Google Scholar 

  28. 28.

    Araújo CGS, Scharhag J (2016) Athlete: a working definition for medical and health sciences research. Scand J Med Sci Sport 26:4–7. https://doi.org/10.1111/sms.12632

    Article  Google Scholar 

  29. 29.

    Levine M, Padayatty SJ, Espey MG (2011) Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2:78–88. https://doi.org/10.3945/an.110.000109.78

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Balshem H, Helfand M, Schünemann HJ et al (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406. https://doi.org/10.1016/j.jclinepi.2010.07.015

    Article  PubMed  Google Scholar 

  31. 31.

    GRADEpro GDT (2015) GRADEpro guideline development tool [software]. McMaster University (developed by Evidence Prime, Inc.). https://www.gradepro.org

  32. 32.

    Cohen J (ed) (1988) Statistical power analysis for the behavioral sciences, 2nd edn. San Diego

  33. 33.

    Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Br Med J 327:557–560

    Article  Google Scholar 

  34. 34.

    Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629

    CAS  Article  Google Scholar 

  35. 35.

    Duval S, Tweedie R (2000) Trim and Fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463

    CAS  Article  Google Scholar 

  36. 36.

    Close GL, Ashton T, Cable T et al (2006) Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr 95:976–981. https://doi.org/10.1079/BJN20061732

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Mizuma H, Tanaka M, Nozaki S et al (2009) Daily oral administration of crocetin attenuates physical fatigue in human subjects. Nutr Res 29:145–150. https://doi.org/10.1016/j.nutres.2009.02.003

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Jakeman P, Maxwell S (1993) Effect of antioxidant vitamin supplementation on muscle function after eccentric exercise. Eur J Appl Physiol Occup Physiol 67:426–430. https://doi.org/10.1007/BF00376459

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Bryer SC, Goldfarb AH (2006) Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab 16:270–280. https://doi.org/10.1123/ijsnem.16.3.270

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Karandish M, Rahideh ST, Moghaddam AZ (2008) Effect of vitamin C supplementation on oxidative stress markers following thirty minutes moderate intensity exercise in healthy young women. J Biol Sci 8:1333–1337

    Article  Google Scholar 

  41. 41.

    Vasankari T, Kujala U, Sarna S, Ahotupa M (1998) Effects of ascorbic acid and carbohygrate ingestion on exercise induced oxidative stress. J Sports Med Phys Fit 38:281–285

    CAS  Google Scholar 

  42. 42.

    Alessio HM, Goldfarb AH, Cao G (1997) Exercise-induced oxidative stress before and after vitamin C supplementation. Int J Sport Nutr 7:1–9

    CAS  Article  Google Scholar 

  43. 43.

    Thompson D, Williams C, Kingsley M et al (2001) Muscle soreness and damage parameters after prolonged intermittent shuttle-running following acute vitamin C supplementation. Int J Sports Med 22:68–75

    CAS  Article  Google Scholar 

  44. 44.

    Thompson D, Bailey DM, Hill J et al (2004) Prolonged vitamin C supplementation and recovery from eccentric exercise. Eur J Appl Physiol 92:133–138. https://doi.org/10.1007/s00421-004-1064-y

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Davison G, Gleeson M (2006) The effect of 2 weeks vitamin C supplementation on immunoendocrine responses to 2.5 h cycling exercise in man. Eur J Appl Physiol 97:454–461. https://doi.org/10.1007/s00421-006-0196-7

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Connolly DAJ, Lauzon C, Agnew J et al (2006) The effects of vitamin C supplementation on symptoms of delayed onset muscle soreness. J Sports Med Phys Fit 46:462–467. https://doi.org/10.1249/00005768-200505001-01641

    CAS  Article  Google Scholar 

  47. 47.

    Goldfarb AH, Patrick SW, Bryer S, You T (2005) Vitamin C supplementation affects oxidative-stress blood markers in response to a 30-minute run at 75% VO2max. Int J Sport Nutr Exerc Metab 15:279–290

    CAS  Article  Google Scholar 

  48. 48.

    Aguiló A, Monjo M, Moreno C et al (2014) Vitamin C supplementation does not influence plasma and blood mononuclear cell IL-6 and IL-10 levels after exercise. J Sports Sci 32:1659–1669. https://doi.org/10.1080/02640414.2014.912759

    Article  PubMed  Google Scholar 

  49. 49.

    Yimcharoen M, Kittikunnathum S, Suknikorn C et al (2019) Effects of ascorbic acid supplementation on oxidative stress markers in healthy women following a single bout of exercise. J Int Soc Sports Nutr 16:1–9

    Article  Google Scholar 

  50. 50.

    Cobley JN, Mchardy H, Morton JP et al (2015) Influence of vitamin C and vitamin E on redox signaling: implications for exercise adaptations. Free Radic Biol Med J 84:65–76

    CAS  Article  Google Scholar 

  51. 51.

    Smirnoff N (2018) Free radical biology and medicine ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic Biol Med J 122:116–129

    CAS  Article  Google Scholar 

  52. 52.

    Bates CJ, Jones KS, Bluck LJC (2004) Stable isotope-labelled vitamin C as a probe for vitamin C absorption by human subjects. Br J Nutr 91:699–705. https://doi.org/10.1079/BJN20041103

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1:2029–2062. https://doi.org/10.1002/cphy.c100092

    Article  PubMed  Google Scholar 

  54. 54.

    Tee JC, Bosch AN, Lambert MI (2007) Metabolic consequences of exercise-induced muscle damage. Sport Med 37:827–836. https://doi.org/10.2165/00007256-200737100-00001

    Article  Google Scholar 

  55. 55.

    Clarkson PM, Nosaka K, Braun B (1992) Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 24:512–520

    CAS  PubMed  Google Scholar 

  56. 56.

    Bessa AL, Oliveora VN, Agostini GG et al (2016) Exercise intensity and recovery: biomarkers of injury, inflammation, and oxidative stress. J Strength Cond Res 30:311–319

    Article  Google Scholar 

  57. 57.

    Noakes TD (1987) Effect of exercise on serum enzyme activities in humans. Sport Med 4:245–246

    CAS  Article  Google Scholar 

  58. 58.

    Margaritelis NV, Paschalis V, Theodorou AA et al (2018) Antioxidants in personalized nutrition and exercise. Adv Nutr 9:813–823

    Article  Google Scholar 

  59. 59.

    Paschalis V, Theodorou AA, Kyparos A et al (2016) Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. Eur J Nutr 55:45–53. https://doi.org/10.1007/s00394-014-0821-x

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Margaritelis NV, Cobley JN, Paschalis V et al (2016) Principles for integrating reactive species into in vivo biological processes: examples from exercise physiology. Cell Signal 28:256–271

    CAS  Article  Google Scholar 

  61. 61.

    Cobley JN, Close GL, Bailey DM, Davison GW (2017) Redox biology exercise redox biochemistry: conceptual, methodological and technical recommendations. Redox Biol J 12:540–548

    CAS  Article  Google Scholar 

  62. 62.

    Owens DJ, Twist C, Cobley JN et al (2019) Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions ? Eur J Sport Sci 19:71–85. https://doi.org/10.1080/17461391.2018.1505957

    Article  PubMed  Google Scholar 

  63. 63.

    Nikolaidis MG, Kerksick CM, Lamprecht M, Mcanulty SR (2012) Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxid Med Cell Longev 2012:1–11. https://doi.org/10.1155/2012/707941

    CAS  Article  Google Scholar 

Download references


The authors thank the Postgraduate Program in Functional Rehabilitation. We would also like to thank the authors who kindly provided additional information needed for the analysis.


This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and the Foundation for Research Support of the State of Rio Grande do Sul—FAPERGS—Public Notice 05/2017—Master.

Author information



Corresponding author

Correspondence to Luis Ulisses Signori.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 262 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Righi, N.C., Schuch, F.B., De Nardi, A.T. et al. Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: meta-analyses of randomized clinical trials. Eur J Nutr 59, 2827–2839 (2020). https://doi.org/10.1007/s00394-020-02215-2

Download citation


  • Ascorbic acid
  • Athlete
  • Exercise
  • Healthy volunteers
  • Inflammation
  • Oxidative stress