Skip to main content
Log in

Prebiotic potencial of juçara berry on changes in gut bacteria and acetate of individuals with obesity

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Whole plant foods can be fermentable by SCFA-producing bacteria and positively influence host adipose tissue development and obesity related-metabolic disorders, conferring a prebiotic role. Considering the juçara berry composition, rich in fiber and polyphenols, we hypothesized the probable prebiotic role of juçara in individuals with obesity.

Methods

It was a randomized double-blind placebo-controlled trial with 35 volunteers with obesity I and II of both sexes aged from 31 to 59 years, divided into juçara group (5 g lyophilized juçara) or placebo group (5 g of maltodextrin) for 6 weeks. Before and after supplementation, food intake and blood and stool samples were collected to evaluate serum LPS, SCFA, and microbial bacteria.

Results

Significant increase in fecal acetate (g = 0.809; p = 0.038) and in relative abundance of A. muciniphila, Bifidobacterium spp. and C. coccoides were observed in response to juçara supplementation (Δ% = 239.6%, 182.6%, and 214%, respectively), with a significant mediator role of Bifidobacterium spp. in high amounts of fecal acetate (z = 2.925; p = 0.003). To certify the prebiotic role of juçara, the averages were adjusted for total fiber intake; and there was no effect of the fiber intake on the SCFA nor on the intestinal bacteria.

Conclusion

Juçara berry may haveprebiotic function, with emphasis on the bifidogenic effect, leading to increased excretion of acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    Article  CAS  Google Scholar 

  2. Roberfroid M, Gibson GR, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–63. https://doi.org/10.1017/S0007114510003363

    Article  CAS  PubMed  Google Scholar 

  3. Hutkins RW, Krumbeck JA, Bindels LB et al (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1–7. https://doi.org/10.1016/j.copbio.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  4. Chaimsohn PF, Chiquetto CN (2013) Construção do marco legal para a produção de açaí de juçara: contribuições da “Oficina Interestadual sobre legislação, comercialização e marketing para exploração de frutos da palmeira juçara”. Revista Conexão UEPG 9.

  5. Borges GSC, Vieira FGK, Copetti C et al (2011) Chemical characterization bioactive compounds and antioxidant capacity of jussara (Euterpe edulis, Food Research International) fruit from the Atlantic Forest in southern Brazil. Oxford 44:2128–2133

    CAS  Google Scholar 

  6. Guergoletto CB, Costabile A, Flores G et al (2016) In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota. Food Chem 196:251–258. https://doi.org/10.1016/j.foodchem.2015.09.048

    Article  CAS  PubMed  Google Scholar 

  7. Morais CA, Oyama LM, Conrado RM et al (2015) Polyphenols-rich fruit in maternal diet modulates inflammatory markers and the gut microbiota and improves colonic expression of ZO-1 in offspring. Food Res Int 77:186–193. https://doi.org/10.1016/j.foodres.2015.06.043

    Article  CAS  Google Scholar 

  8. Jamar G, Santamarina AB, Mennitti LV et al (2018) Bifidobacterium spp. reshaping in the gut microbiota by low dose of juçara supplementation and hypothalamic insulin resistance in Wistar rats. J Funct Foods 46:212–219. https://doi.org/10.1016/j.jff.2018.05.002

    Article  CAS  Google Scholar 

  9. Santamarina AB, Jamar G, Mennitti LV et al (2018) The use of juçara (Euterpe edulis Mart.) supplementation for suppression of NF-κB pathway in the hypothalamus after high-fat diet in Wistar rats. Molecules 23:E1814. https://doi.org/10.3390/molecules23071814

    Article  CAS  PubMed  Google Scholar 

  10. McLoughlin RF, Berthon BS, Jensen ME et al (2017) Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr 106:930–945. https://doi.org/10.3945/ajcn.117.156265

    Article  CAS  PubMed  Google Scholar 

  11. Gómez-Gallego C, Pohl S, Salminen S et al (2016) Akkermansia muciniphila: a novel functional microbe with probiotic properties. Benef Microbes 7:571–584. https://doi.org/10.3920/BM2016.0009

    Article  PubMed  Google Scholar 

  12. Korpela K (2018) Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu Rev Food Sci Technol 9:65–84. https://doi.org/10.1146/annurev-food-030117-012830

    Article  CAS  PubMed  Google Scholar 

  13. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  Google Scholar 

  14. Portune KJ, Benítez-Páez A, Del Pulgar EM et al (2017) Gut microbiota, diet, and obesity-related disorders the good, the bad, and the future challenges. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600252

    Article  PubMed  Google Scholar 

  15. Gomes AC, Hoffmann C, Mota JF (2018) The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes 9:308–325

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cani PD, Van Hul M, Lefort C et al (2019) Microbial regulation of organismal energy homeostasis. Nat Metabol 1:34–46. https://doi.org/10.1038/s42255-018-0017-4

    Article  CAS  Google Scholar 

  17. Caesar R, Tremaroli V, Kovatcheva-Datchary P et al (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22:658–668. https://doi.org/10.1016/j.cmet.2015.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bervoets L, Hoorenbeeck KV, Kortleven I et al (2013) Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathogens 5:10. https://doi.org/10.1186/1757-4749-5-10

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gomes AC, Hoffmann C, Mota JF (2019) Gut microbiota is associated with adiposity markers and probiotics may impact specific genera. Eur J Nutr. https://doi.org/10.1007/s00394-019-02034-0

    Article  PubMed  Google Scholar 

  20. Schwiertz A, Taras D, Schäfer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195. https://doi.org/10.1038/oby.2009.167

    Article  PubMed  Google Scholar 

  21. Scott KP, Gratz SW, Sheridan PO et al (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60. https://doi.org/10.1016/j.phrs.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  22. (WHO) World Health Organization (2005) Active ageing: a policy framework. Media Center. https://www.who.int/ageing/publications/active_ageing/en/. Accessed Mar 2015.

  23. Basu A, Du M, Sanchez K et al (2011) Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition 27:206–213. https://doi.org/10.1016/j.nut.2010.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faul F, Erdfelder E, Lang AG et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  Google Scholar 

  25. Moher D, Hopewell S, Schulz KF et al (2012) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg 10:28–55

    Article  Google Scholar 

  26. AOAC (1997) Association of official analytical chemists international official methods of analysis. AOAC, Arlington

    Google Scholar 

  27. Kamikura MA, Baxmann A, Sampaio LR et al (2007) Avaliação nutricional. In: Cuppari L (ed) Nutrição Clínica no Adulto. Guias de medicina Ambulatorial e Hospitalar, Manole, pp 89–115

    Google Scholar 

  28. Grandjean AC, Ruud JS (1994) Nutrition for cyclists. Clin Sports Med 13:235–247

    Article  CAS  Google Scholar 

  29. Carli GA (2008) Parasitologia Clínica, 2nd edn. Atheneu, São Paulo

    Google Scholar 

  30. Zhao G, Nyman M, Jönsson JA (2006) Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr 20:674–682

    Article  CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  32. Hedges LV (1982) Estimation of effect size from a series of independent experiments. Psychol Bull 92:490–499

    Article  Google Scholar 

  33. Espírito-Santo H, Daniel FB (2015) Calcular e apresentar tamanhos do efeito em trabalhos científicos (1): as limitações do p %3c 0,05 na análise de diferenças de médias de dois grupos. Revista Portuguesa De Investigação Comportamental e Social 1:3–16

    Article  Google Scholar 

  34. Hayes AF (2013) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Guildford Press, New York

    Google Scholar 

  35. Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891

    Article  Google Scholar 

  36. Sobel ME (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 13:290–312. https://doi.org/10.2307/270723

    Article  Google Scholar 

  37. Santos RD, Gagliardi ACM, Xavier HT et al (2013) Sociedade Brasileira de Cardiologia. I Diretriz sobre o consumo de Gorduras e Saúde cardiovascular. Arq Bras Cardiol 100:1–40

    CAS  PubMed  Google Scholar 

  38. Anhê FF, Roy D, Pilon G et al (2015) A polyphenol-rich cranberry extract protects from diet induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872–883. https://doi.org/10.1136/gutjnl-2014-307142

    Article  CAS  PubMed  Google Scholar 

  39. Benítez-Páez A, Gómez Del Pulgar EM, Kjølbæk L et al (2016) Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trend Food Sci Technol 57:201–212. https://doi.org/10.1016/j.tifs.2016.11.001

    Article  CAS  Google Scholar 

  40. Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  Google Scholar 

  41. Zhao S, Liu W, Wang J et al (2017) Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol 58:1–14

    Article  Google Scholar 

  42. Dao MC, Everard A, Aron-Wisnewsky J et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436. https://doi.org/10.1136/gutjnl-2014-308778

    Article  CAS  Google Scholar 

  43. Roopchand DE, Carmody RN, Kuhn P et al (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–2858. https://doi.org/10.2337/db14-1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen W, Shen M, Zhao X et al (2017) Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Front Microbiol 8:272. https://doi.org/10.3389/fmicb.2017.00272

    Article  PubMed  PubMed Central  Google Scholar 

  45. Belzer C, Chia L, Aalvink S et al (2017) Microbial metabolic networks at the mucus layer lead to diet independent butyrate and vitamin B12 production by intestinal symbionts. MBio 8:e00770–e817. https://doi.org/10.1128/mBio.00770-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arboleya S, Watkins C, Stanton C et al (2016) Gut bifidobacteria populations in human health and aging. Front Microbiol 7:1204. https://doi.org/10.3389/fmicb.2016.01204

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brusaferro A, Cozzali R, Orabona C et al (2018) Is It time to use probiotics to prevent or treat obesity? Nutrients 10:E1613. https://doi.org/10.3390/nu10111613

    Article  CAS  PubMed  Google Scholar 

  48. Alqurashi RM, Alarifi SN, Walton GE et al (2017) In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chem 234:190–198. https://doi.org/10.1016/j.foodchem.2017.04.164

    Article  CAS  PubMed  Google Scholar 

  49. Scott KP, Martin JC, Duncan SH et al (2014) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 87:30–40. https://doi.org/10.1111/1574-6941.12186

    Article  CAS  PubMed  Google Scholar 

  50. Aoki R, Kamikado K, Suda W et al (2017) A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Sci Rep 7:43522. https://doi.org/10.1038/srep43522

    Article  PubMed  PubMed Central  Google Scholar 

  51. van der Beek CM, Canfora EE, Kip AM, Gorissen SHM et al (2018) The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 87:25–35. https://doi.org/10.1016/j.metabol.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  52. Si X, Shang W, Zhou Z et al (2018) Gut microbiome-induced shift of acetate to butyrate positively manages dysbiosis in high fat diet. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700670

    Article  PubMed  Google Scholar 

  53. Nagpal R, Wang S, Solberg Woods LC et al (2018) Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front Microbiol 9:2897. https://doi.org/10.3389/fmicb.2018.02897

    Article  PubMed  PubMed Central  Google Scholar 

  54. Anhê FF, Varin TV, Le Barz M et al (2015) Gut Microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep 4:389–400. https://doi.org/10.1007/s13679-015-0172-9

    Article  PubMed  Google Scholar 

  55. Kondo T, Kishi M, Fushimi T et al (2009) Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J Agric Food Chem 57:5982–5986. https://doi.org/10.1021/jf900470c

    Article  CAS  PubMed  Google Scholar 

  56. Moens F, Verce M, De Vuyst L (2017) Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Int J Food Microbiol 241:225–236. https://doi.org/10.1016/j.ijfoodmicro.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  57. Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62:1589–1592

    Article  CAS  Google Scholar 

  58. Crovesy L, Ostrowski M, Ferreira DMTP et al (2017) Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes (Lond) 41:1607–1614. https://doi.org/10.1038/ijo.2017.161

    Article  CAS  Google Scholar 

  59. Torres-Fuentes C, Schellekens H, Dinan TG et al (2017) The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2:747–756. https://doi.org/10.1016/S2468-1253(17)30147-4

    Article  PubMed  Google Scholar 

  60. Li Z, Henning SM, Lee RP et al (2015) Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct 6:2487–2495. https://doi.org/10.1039/c5fo00669d

    Article  CAS  PubMed  Google Scholar 

  61. Pastor Rojo O, San L, Román A et al (2007) Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflamm Bowel Dis 13:269–277

    Article  Google Scholar 

  62. Laugerette F, Furet JP, Debard C et al (2012) Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. AJP Endocrinol Metab 302:e374–e386. https://doi.org/10.1152/ajpendo.00314.2011

    Article  CAS  Google Scholar 

  63. Renard CMGC, Watrelot AA, Le Bourvellec C (2017) Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion. Trends Food Sci Technol 60:43–51. https://doi.org/10.1016/j.tifs.2016.10.022

    Article  CAS  Google Scholar 

  64. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181. https://doi.org/10.1016/j.copbio.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  65. Edwards CA, Havlik J, Cong W et al (2017) Polyphenols and health: interactions between fibre, plant polyphenols and the gut microbiota. Nutr Bull 42:356–360. https://doi.org/10.1111/nbu.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kocełak P, Zak-Gołab A, Zahorska-Markiewicz B et al (2013) Resting energy expenditure and gut microbiota in obese and normal weight subjects. Eur Rev Med Pharmacol Sci 17:2816–2821

    PubMed  Google Scholar 

  67. Jamar G, Estadella D, Pisani LP (2017) Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors 43:507–516. https://doi.org/10.1002/biof.1365

    Article  CAS  PubMed  Google Scholar 

  68. Kutschera M, Engst W, Blaut M et al (2011) Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 111:165–175. https://doi.org/10.1111/j.1365-2672.2011.05025.x

    Article  CAS  PubMed  Google Scholar 

  69. Anonye BO (2017) Commentary: dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Front Immunol 8:850. https://doi.org/10.3389/fimmu.2017.00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Igwe EO, Charlton KE, Probst YC et al (2019) A systematic literature review of the effect of anthocyanins on gut microbiota populations. J Hum Nutr Diet 32:53–62. https://doi.org/10.1111/jhn.12582

    Article  CAS  PubMed  Google Scholar 

  71. Tu P, Bian X, Chi L et al (2018) Characterization of the functional changes in mouse gut microbiome associated with increased Akkermansia muciniphila population modulated by dietary black raspberries. ACS Omega 3:10927–10937. https://doi.org/10.1021/acsomega.8b00064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dolara P, Luceri C, De Filippo C et al (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591:237–246

    Article  CAS  Google Scholar 

  73. Lila MA, Burton-Freeman B, Grace M et al (2016) Unraveling anthocyanin bioavailability for human health. Ann Rev Food Sci Technol 7:375–393. https://doi.org/10.1146/annurev-food-041715-033346

    Article  CAS  Google Scholar 

  74. de Castro CA, Natali AJ, Cardoso LM et al (2014) Aerobic exercise and not a diet supplemented with jussara açaí (Euterpe edulis Martius) alters hepatic oxidative and inflammatory biomarkers in ApoE-deficient mice. Br J Nutr 112:285–294. https://doi.org/10.1017/S000711451400083X

    Article  CAS  PubMed  Google Scholar 

  75. Oyama LM, Silva FP, Carnier J et al (2016) Juçara pulp supplementation improves glucose tolerance in mice. Diabetol Metab Syndr 22:1–8. https://doi.org/10.1186/s13098-015-0122-4

    Article  CAS  Google Scholar 

  76. Cardoso AL, Di Pietro PF, Vieira FGK et al (2015) Acute consumption of juçara juice (Euterpe edulis) and antioxidant activity in healthy individuals. J Funct Foods 17:152–162. https://doi.org/10.1016/j.jff.2015.05.014

    Article  CAS  Google Scholar 

  77. Santamarina AB, Jamar G, Mennitti LV et al (2018) Supplementation of juçara berry (Euterpe edulis Mart.) modulates epigenetic markers in monocytes from obese adults: a double-blind randomized trial. Nutrients 10:E1899. https://doi.org/10.3390/nu10121899

    Article  CAS  PubMed  Google Scholar 

  78. Santamarina AB, Jamar G, Mennitti LV et al (2019) Obesity-related inflammatory modulation by juçara berry (Euterpe edulis Mart.) supplementation in Brazilian adults: a double-blind randomized controlled trial. Eur J Nutr. https://doi.org/10.1007/s00394-019-02024-2

    Article  PubMed  Google Scholar 

  79. Nadkarni MA, Martin FE, Jacques NA et al (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    Article  CAS  Google Scholar 

  80. Collado MC, Derrien M, Isolauri E et al (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770

    Article  CAS  Google Scholar 

  81. Rinttila T, Kassinen A, Malinen E et al (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97:1166–1177

    Article  CAS  Google Scholar 

  82. Matsuki T, Watanabe K, Fujimoto J et al (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70:7220–7228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dylbert Fragoso Silvestre for the assistance in the English language.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2016/14133-0). LPP and VVR are recipients of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) fellowship.

Author information

Authors and Affiliations

Authors

Contributions

LPP and VVDR designed the study protocol; GJ, ABS, BPC, RW, and MBF conducted experiments and analyzed data. LPP and GJ critically revised the article for important intellectual content; LPP and GJ contributed to writing the manuscript.

Corresponding author

Correspondence to Luciana Pellegrini Pisani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamar, G., Santamarina, A.B., Casagrande, B.P. et al. Prebiotic potencial of juçara berry on changes in gut bacteria and acetate of individuals with obesity. Eur J Nutr 59, 3767–3778 (2020). https://doi.org/10.1007/s00394-020-02208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02208-1

Keywords

Navigation