Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice



Obesity, a strong risk factor for metabolic disorder, has become a major impediment for public health globally. The objective of this study was to assess the anti-obesity effect of mung bean, and the relationship between the gut microbiota modulatory effects of mung bean and the prevention of obesity.


Thirty-two four-week-old male C57BL/6 J mice were divided into four groups: normal chow diet (NCD), high-fat diet (HFD), a high-fat diet supplemented with 30% whole mung bean flour (HFD-WMB), and a high-fat diet supplemented with 30% decorticated mung bean flour (HFD-DMB). The ability of a mung bean-based diet to combat obesity-related metabolic disorder was determined by assessing the changes in physiological, histological, biochemical parameters, and gut microbiota composition of mice with HFD-induced obesity at 12 weeks.


Both of WMB and DMB supplementation can effectively alleviate HFD-induced lipid metabolic disorders, which was accompanied by a reduction in hepatic steatosis. However, the only supplementation with WMB significantly reduced HFD-induced body weight gain, fat accumulation, and adipocyte size, and ameliorated the glucose tolerance and insulin resistance by sensitizing insulin action. Furthermore, high-throughput pyrosequencing of 16S rRNA revealed that WMB and DMB supplementation could normalize HFD-induced gut microbiota dysbiosis. Especially, WMB and DMB supplementation significantly promoted the relative abundance of Akkermansia and Bifidobacterium, respectively, and both of them significantly restored the relative abundance of several HFD-dependent taxa back to normal status in this study. Spearman’s correlation analysis revealed that those genera are closely correlated with obesity-related indices.


Although WMB showed better beneficial effects on HFD-induced obesity in comparison with DMB, DMB still retained some health benefits. Moreover, the alleviation of HFD-induced changes by mung bean supplementation was, at least, partially conciliated by structural modulation of gut microbiota.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Medina-Remón A, Kirwan R, Lamuela-Raventós RM, Estruch R (2018) Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr 58(2):262–296. https://doi.org/10.1080/10408398.2016.1158690

    Article  PubMed  Google Scholar 

  2. 2.

    Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376(3):254–266. https://doi.org/10.1056/NEJMra1514009

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444(7122):1022–1023. https://doi.org/10.1038/4441022a

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242. https://doi.org/10.1038/nature11552

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2008) A core gut microbiome in obese and lean twins. Nature 457:480. https://doi.org/10.1038/nature07540https://www.nature.com/articles/nature07540#supplementary-information

  6. 6.

    Gong L, Cao W, Chi H, Wang J, Zhang H, Liu J, Sun B (2018) Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res Int 103:84–102. https://doi.org/10.1016/j.foodres.2017.10.025

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Marinangeli CPF, Jones PJH (2012) Pulse grain consumption and obesity: effects on energy expenditure, substrate oxidation, body composition, fat deposition and satiety. Br J Nutr 108(S1):S46–S51. https://doi.org/10.1017/S0007114512000773

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Rebello CJ, Greenway FL, Finley JW (2014) Whole grains and pulses: a comparison of the nutritional and health benefits. J Agric Food Chem 62(29):7029–7049. https://doi.org/10.1021/jf500932z

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q (2019) Mung bean (Vigna radiata L.) bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11(6):1238. https://doi.org/10.3390/nu11061238

    CAS  Article  PubMed Central  Google Scholar 

  11. 11.

    Yao Y, Chen F, Wang M, Wang J, Ren G (2008) Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice. J Agric Food Chem 56(19):8869–8873. https://doi.org/10.1021/jf8009238

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Inhae K, Seojin C, Joung HT, Munji C, Hae-Ri W, Won LB, Myoungsook L (2015) Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-Ay diabese mouse model. J Med Food 18(8):841–849. https://doi.org/10.1089/jmf.2014.3364

    CAS  Article  Google Scholar 

  13. 13.

    Xie J, Du M, Shen M, Wu T, Lin L (2019) Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from mung bean (Vigna radiate). Food Chem 270:243–250. https://doi.org/10.1016/j.foodchem.2018.07.103

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Joghatai M, Barari L, Mousavie Anijdan SH, Elmi MM (2018) The evaluation of radio-sensitivity of mung bean proteins aqueous extract on MCF-7, hela and fibroblast cell line. Int J Radiat Biol 94(5):478–487. https://doi.org/10.1080/09553002.2018.1446226

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Lopes LAR, Martins MDCC, Farias LM, Brito AKS, Lima GDM, Carvalho VBL, Pereira CFC, Conde Júnior AM, Saldanha T, Arêas JAG, Silva KJD, Frota KDMG (2018) Cholesterol-lowering and liver-protective effects of cooked and germinated mung beans (Vigna radiata L.). Nutrients 10(7):821. https://doi.org/10.3390/nu10070821

    CAS  Article  PubMed Central  Google Scholar 

  16. 16.

    Dai Z, Su D, Zhang Y, Sun Y, Hu B, Ye H, Jabbar S, Zeng X (2014) Immunomodulatory activity in vitro and in vivo of verbascose from mung beans (Phaseolus aureus). J Agric Food Chem 62(44):10727–10735. https://doi.org/10.1021/jf503510h

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Mubarak AE (2005) Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem 89(4):489–495. https://doi.org/10.1016/j.foodchem.2004.01.007

    CAS  Article  Google Scholar 

  18. 18.

    Andersson KE, Chawade A, Thuresson N, Rascon A, Öste R, Sterner O, Olsson O, Hellstrand P (2017) Wholegrain oat diet changes the expression of genes associated with intestinal bile acid transport. Mol Nutr Food Res 61(7):1600874. https://doi.org/10.1002/mnfr.201600874

    CAS  Article  Google Scholar 

  19. 19.

    Liyanage R, Kiramage C, Visvanathan R, Jayathilake C, Weththasinghe P, Bangamuwage R, Chaminda Jayawardana B, Vidanarachchi J (2018) Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats. J Food Biochem 42(1):e12457. https://doi.org/10.1111/jfbc.12457

    CAS  Article  Google Scholar 

  20. 20.

    Hou D, Zhao Q, Yousaf L, Khan J, Xue Y, Shen Q (2020) Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J Funct Foods 64:103687. https://doi.org/10.1016/j.jff.2019.103687

    Article  Google Scholar 

  21. 21.

    Sarma SM, Khare P, Jagtap S, Singh DP, Baboota RK, Podili K, Boparai RK, Kaur J, Bhutani KK, Bishnoi M, Kondepudi KK (2017) Kodo millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food Funct 8(3):1174–1183. https://doi.org/10.1039/C6FO01467D

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yao Y, Zhu Y, Ren G (2014) Mung bean protein increases plasma cholesterol by up-regulation of hepatic HMG-CoA reductase, and CYP7A1 in mRNA Levels. J Food Nutr Res 2(11):770–775. https://doi.org/10.12691/jfnr-2-11-2

    Article  Google Scholar 

  27. 27.

    Nakatani A, Li X, Miyamoto J, Igarashi M, Watanabe H, Sutou A, Watanabe K, Motoyama T, Tachibana N, Kohno M, Inoue H, Kimura I (2018) Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochem Biophys Res Commun 501(4):955–961. https://doi.org/10.1016/j.bbrc.2018.05.090

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Luo J, Cai W, Wu T, Xu B (2016) Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem 201:350–360. https://doi.org/10.1016/j.foodchem.2016.01.101

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zhong L, Fang Z, Wahlqvist ML, Wu G, Hodgson JM, Johnson SK (2018) Seed coats of pulses as a food ingredient: characterization, processing, and applications. Trends Food Sci Technol 80:35–42. https://doi.org/10.1016/j.tifs.2018.07.021

    CAS  Article  Google Scholar 

  30. 30.

    Jang Y-H, Kang M-J, Choe E-O, Shin M, Kim J-I (2014) Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Sci Biotechnol 23(1):247–252. https://doi.org/10.1007/s10068-014-0034-3

    CAS  Article  Google Scholar 

  31. 31.

    Kohno M, Motoyama T, Shigihara Y, Sakamoto M, Sugano H (2017) Improvement of glucose metabolism via mung bean protein consumption: a clinical trial of GLUCODIA TM isolated mung bean protein in Japan. Funct Foods Health Dis 7:115–134. https://doi.org/10.1017/jns.2017.68

    CAS  Article  Google Scholar 

  32. 32.

    Carmiel-Haggai M, Cederbaum AI, Nieto N (2005) A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J 19(1):136–138. https://doi.org/10.1096/fj.04-2291fje

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Watanabe H, Inaba Y, Inoue H, Kimura K, Kaneko S, Asahara S-i, Kido Y, Matsumoto M, Kohno M, Tachibana N, Motoyama T (2016) Dietary mung bean protein reduces hepatic steatosis, fibrosis, and inflammation in male mice with diet-induced, nonalcoholic fatty liver disease. J Nutr 147(1):52–60. https://doi.org/10.3945/jn.116.231662

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Liu T, Yu XH, Gao EZ, Liu XN, Sun LJ, Li HL, Wang P, Zhao YL, Yu ZG (2014) Hepatoprotective effect of active constituents isolated from mung beans (Phaseolus radiates L.) in an alcohol-induced liver injury mouse model. J Food Biochem 38(5):453–459. https://doi.org/10.1111/jfbc.12083

    CAS  Article  Google Scholar 

  35. 35.

    Viuda-Martos M, López-Marcos MC, Fernández-López J, Sendra E, López-Vargas JH, Pérez-Álvarez JA (2010) Role of fiber in cardiovascular diseases: a review. Compr Rev Food Sci Food Safety 9(2):240–258. https://doi.org/10.1111/j.1541-4337.2009.00102.x

    CAS  Article  Google Scholar 

  36. 36.

    Silva FM, Kramer CK, de Almeida JC, Steemburgo T, Gross JL, Azevedo MJ (2013) Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev 71(12):790–801. https://doi.org/10.1111/nure.12076

    Article  PubMed  Google Scholar 

  37. 37.

    Cho SS, Qi L, Fahey GC Jr, Klurfeld DM (2013) Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 98(2):594–619. https://doi.org/10.3945/ajcn.113.067629

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Weickert MO, Pfeiffer AF (2018) Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J Nutr 148(1):7–12. https://doi.org/10.1093/jn/nxx008

    Article  PubMed  Google Scholar 

  39. 39.

    Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31(1):15–31. https://doi.org/10.1146/annurev-nutr-072610-145146

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Rev Endocrinol 7(11):639–646. https://doi.org/10.1038/nrendo.2011.126

    CAS  Article  Google Scholar 

  41. 41.

    Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61(3):219–225. https://doi.org/10.1016/j.phrs.2009.11.001

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44

    Article  Google Scholar 

  43. 43.

    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075. https://doi.org/10.1073/pnas.0504978102

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  45. 45.

    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. https://doi.org/10.1126/science.1223813

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Lee W-J, Hase K (2014) Gut microbiota–generated metabolites in animal health and disease. Nat Chem Biol 10(6):416–424. https://doi.org/10.1038/nchembio.1535

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Jayachandran M, Chung SSM, Xu B (2019) A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1632789

    Article  PubMed  Google Scholar 

  48. 48.

    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between %3cem%3eAkkermansia muciniphila%3c/em%3e and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  Google Scholar 

  49. 49.

    Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW, Lee M-S, Bae J-W (2014) An increase in the %3cem%3eAkkermansia%3c/em%3e spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Liu S, Li F, Zhang X (2019) Structural modulation of gut microbiota reveals coix seed contributes to weight loss in mice. Appl Microbiol Biotechnol 103(13):5311–5321. https://doi.org/10.1007/s00253-019-09786-z

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Li Y, Cui Y, Lu F, Wang X, Liao X, Hu X, Zhang Y (2019) Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice. J Funct Foods 60:103436. https://doi.org/10.1016/j.jff.2019.103436

    CAS  Article  Google Scholar 

  52. 52.

    Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36(6):817–825. https://doi.org/10.1038/ijo.2011.153

    CAS  Article  Google Scholar 

  53. 53.

    Chen J, Wang R, Li X-F, Wang R-L (2011) Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 107(10):1429–1434. https://doi.org/10.1017/S0007114511004491

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Wang P, Li D, Ke W, Liang D, Hu X, Chen F (2019) Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes. https://doi.org/10.1038/s41366-019-0332-1

    Article  Google Scholar 

  55. 55.

    Gan R-Y, Deng Z-Q, Yan A-X, Shah NP, Lui W-Y, Chan C-L, Corke H (2016) Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT 73:168–177. https://doi.org/10.1016/j.lwt.2016.06.012

    CAS  Article  Google Scholar 

  56. 56.

    Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54(3):325–341. https://doi.org/10.1007/s00394-015-0852-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ozdal T, Sela DA, Xiao JB, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8(2):36. https://doi.org/10.3390/nu8020078

    CAS  Article  Google Scholar 

  58. 58.

    Myint H, Kishi H, Iwahashi Y, Saburi W, Koike S, Kobayashi Y (2018) Functional modulation of caecal fermentation and microbiota in rat by feeding bean husk as a dietary fibre supplement. Benef Mirbobes 9(6):963–974. https://doi.org/10.3920/bm2017.0174

    CAS  Article  Google Scholar 

  59. 59.

    Yang L, Zhao Y, Huang J, Zhang H, Lin Q, Han L, Liu J, Wang J, Liu H (2019) Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. J Food Sci Technol. https://doi.org/10.1007/s13197-019-04041-9

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Forgie AJ, Gao Y, Ju T, Pepin DM, Yang K, Gänzle MG, Ozga JA, Chan CB, Willing BP (2019) Pea polyphenolics and hydrolysis processing alter microbial community structure and early pathogen colonization in mice. J Nutr Biochem 67:101–110. https://doi.org/10.1016/j.jnutbio.2019.01.012

    CAS  Article  PubMed  Google Scholar 

Download references


This work was financially supported by the National Key Research and Development Program of China (2017YFD0401202).

Author information



Corresponding author

Correspondence to Qun Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6129 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, D., Zhao, Q., Yousaf, L. et al. Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice. Eur J Nutr 59, 3617–3634 (2020). https://doi.org/10.1007/s00394-020-02196-2

Download citation


  • Whole mung bean
  • Decorticated mung bean
  • Obesity
  • Lipid disorders
  • Gut microbiota