Medina-Remón A, Kirwan R, Lamuela-Raventós RM, Estruch R (2018) Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr 58(2):262–296. https://doi.org/10.1080/10408398.2016.1158690
Article
PubMed
Google Scholar
Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376(3):254–266. https://doi.org/10.1056/NEJMra1514009
CAS
Article
PubMed
Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444(7122):1022–1023. https://doi.org/10.1038/4441022a
CAS
Article
PubMed
Google Scholar
Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242. https://doi.org/10.1038/nature11552
CAS
Article
PubMed
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2008) A core gut microbiome in obese and lean twins. Nature 457:480. https://doi.org/10.1038/nature07540https://www.nature.com/articles/nature07540#supplementary-information
Gong L, Cao W, Chi H, Wang J, Zhang H, Liu J, Sun B (2018) Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res Int 103:84–102. https://doi.org/10.1016/j.foodres.2017.10.025
CAS
Article
PubMed
Google Scholar
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8
CAS
Article
PubMed
Google Scholar
Marinangeli CPF, Jones PJH (2012) Pulse grain consumption and obesity: effects on energy expenditure, substrate oxidation, body composition, fat deposition and satiety. Br J Nutr 108(S1):S46–S51. https://doi.org/10.1017/S0007114512000773
CAS
Article
PubMed
Google Scholar
Rebello CJ, Greenway FL, Finley JW (2014) Whole grains and pulses: a comparison of the nutritional and health benefits. J Agric Food Chem 62(29):7029–7049. https://doi.org/10.1021/jf500932z
CAS
Article
PubMed
Google Scholar
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q (2019) Mung bean (Vigna radiata L.) bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11(6):1238. https://doi.org/10.3390/nu11061238
CAS
Article
PubMed Central
Google Scholar
Yao Y, Chen F, Wang M, Wang J, Ren G (2008) Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice. J Agric Food Chem 56(19):8869–8873. https://doi.org/10.1021/jf8009238
CAS
Article
PubMed
Google Scholar
Inhae K, Seojin C, Joung HT, Munji C, Hae-Ri W, Won LB, Myoungsook L (2015) Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-Ay diabese mouse model. J Med Food 18(8):841–849. https://doi.org/10.1089/jmf.2014.3364
CAS
Article
Google Scholar
Xie J, Du M, Shen M, Wu T, Lin L (2019) Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from mung bean (Vigna radiate). Food Chem 270:243–250. https://doi.org/10.1016/j.foodchem.2018.07.103
CAS
Article
PubMed
Google Scholar
Joghatai M, Barari L, Mousavie Anijdan SH, Elmi MM (2018) The evaluation of radio-sensitivity of mung bean proteins aqueous extract on MCF-7, hela and fibroblast cell line. Int J Radiat Biol 94(5):478–487. https://doi.org/10.1080/09553002.2018.1446226
CAS
Article
PubMed
Google Scholar
Lopes LAR, Martins MDCC, Farias LM, Brito AKS, Lima GDM, Carvalho VBL, Pereira CFC, Conde Júnior AM, Saldanha T, Arêas JAG, Silva KJD, Frota KDMG (2018) Cholesterol-lowering and liver-protective effects of cooked and germinated mung beans (Vigna radiata L.). Nutrients 10(7):821. https://doi.org/10.3390/nu10070821
CAS
Article
PubMed Central
Google Scholar
Dai Z, Su D, Zhang Y, Sun Y, Hu B, Ye H, Jabbar S, Zeng X (2014) Immunomodulatory activity in vitro and in vivo of verbascose from mung beans (Phaseolus aureus). J Agric Food Chem 62(44):10727–10735. https://doi.org/10.1021/jf503510h
CAS
Article
PubMed
Google Scholar
Mubarak AE (2005) Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem 89(4):489–495. https://doi.org/10.1016/j.foodchem.2004.01.007
CAS
Article
Google Scholar
Andersson KE, Chawade A, Thuresson N, Rascon A, Öste R, Sterner O, Olsson O, Hellstrand P (2017) Wholegrain oat diet changes the expression of genes associated with intestinal bile acid transport. Mol Nutr Food Res 61(7):1600874. https://doi.org/10.1002/mnfr.201600874
CAS
Article
Google Scholar
Liyanage R, Kiramage C, Visvanathan R, Jayathilake C, Weththasinghe P, Bangamuwage R, Chaminda Jayawardana B, Vidanarachchi J (2018) Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats. J Food Biochem 42(1):e12457. https://doi.org/10.1111/jfbc.12457
CAS
Article
Google Scholar
Hou D, Zhao Q, Yousaf L, Khan J, Xue Y, Shen Q (2020) Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J Funct Foods 64:103687. https://doi.org/10.1016/j.jff.2019.103687
Article
Google Scholar
Sarma SM, Khare P, Jagtap S, Singh DP, Baboota RK, Podili K, Boparai RK, Kaur J, Bhutani KK, Bishnoi M, Kondepudi KK (2017) Kodo millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food Funct 8(3):1174–1183. https://doi.org/10.1039/C6FO01467D
CAS
Article
PubMed
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219
CAS
Article
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303
CAS
Article
PubMed
PubMed Central
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60
Article
PubMed
PubMed Central
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676
CAS
Article
PubMed
PubMed Central
Google Scholar
Yao Y, Zhu Y, Ren G (2014) Mung bean protein increases plasma cholesterol by up-regulation of hepatic HMG-CoA reductase, and CYP7A1 in mRNA Levels. J Food Nutr Res 2(11):770–775. https://doi.org/10.12691/jfnr-2-11-2
Article
Google Scholar
Nakatani A, Li X, Miyamoto J, Igarashi M, Watanabe H, Sutou A, Watanabe K, Motoyama T, Tachibana N, Kohno M, Inoue H, Kimura I (2018) Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochem Biophys Res Commun 501(4):955–961. https://doi.org/10.1016/j.bbrc.2018.05.090
CAS
Article
PubMed
Google Scholar
Luo J, Cai W, Wu T, Xu B (2016) Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem 201:350–360. https://doi.org/10.1016/j.foodchem.2016.01.101
CAS
Article
PubMed
Google Scholar
Zhong L, Fang Z, Wahlqvist ML, Wu G, Hodgson JM, Johnson SK (2018) Seed coats of pulses as a food ingredient: characterization, processing, and applications. Trends Food Sci Technol 80:35–42. https://doi.org/10.1016/j.tifs.2018.07.021
CAS
Article
Google Scholar
Jang Y-H, Kang M-J, Choe E-O, Shin M, Kim J-I (2014) Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Sci Biotechnol 23(1):247–252. https://doi.org/10.1007/s10068-014-0034-3
CAS
Article
Google Scholar
Kohno M, Motoyama T, Shigihara Y, Sakamoto M, Sugano H (2017) Improvement of glucose metabolism via mung bean protein consumption: a clinical trial of GLUCODIA TM isolated mung bean protein in Japan. Funct Foods Health Dis 7:115–134. https://doi.org/10.1017/jns.2017.68
CAS
Article
Google Scholar
Carmiel-Haggai M, Cederbaum AI, Nieto N (2005) A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J 19(1):136–138. https://doi.org/10.1096/fj.04-2291fje
CAS
Article
PubMed
Google Scholar
Watanabe H, Inaba Y, Inoue H, Kimura K, Kaneko S, Asahara S-i, Kido Y, Matsumoto M, Kohno M, Tachibana N, Motoyama T (2016) Dietary mung bean protein reduces hepatic steatosis, fibrosis, and inflammation in male mice with diet-induced, nonalcoholic fatty liver disease. J Nutr 147(1):52–60. https://doi.org/10.3945/jn.116.231662
CAS
Article
PubMed
Google Scholar
Liu T, Yu XH, Gao EZ, Liu XN, Sun LJ, Li HL, Wang P, Zhao YL, Yu ZG (2014) Hepatoprotective effect of active constituents isolated from mung beans (Phaseolus radiates L.) in an alcohol-induced liver injury mouse model. J Food Biochem 38(5):453–459. https://doi.org/10.1111/jfbc.12083
CAS
Article
Google Scholar
Viuda-Martos M, López-Marcos MC, Fernández-López J, Sendra E, López-Vargas JH, Pérez-Álvarez JA (2010) Role of fiber in cardiovascular diseases: a review. Compr Rev Food Sci Food Safety 9(2):240–258. https://doi.org/10.1111/j.1541-4337.2009.00102.x
CAS
Article
Google Scholar
Silva FM, Kramer CK, de Almeida JC, Steemburgo T, Gross JL, Azevedo MJ (2013) Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev 71(12):790–801. https://doi.org/10.1111/nure.12076
Article
PubMed
Google Scholar
Cho SS, Qi L, Fahey GC Jr, Klurfeld DM (2013) Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 98(2):594–619. https://doi.org/10.3945/ajcn.113.067629
CAS
Article
PubMed
Google Scholar
Weickert MO, Pfeiffer AF (2018) Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J Nutr 148(1):7–12. https://doi.org/10.1093/jn/nxx008
Article
PubMed
Google Scholar
Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31(1):15–31. https://doi.org/10.1146/annurev-nutr-072610-145146
CAS
Article
PubMed
Google Scholar
Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Rev Endocrinol 7(11):639–646. https://doi.org/10.1038/nrendo.2011.126
CAS
Article
Google Scholar
Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61(3):219–225. https://doi.org/10.1016/j.phrs.2009.11.001
CAS
Article
PubMed
Google Scholar
Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44
Article
Google Scholar
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075. https://doi.org/10.1073/pnas.0504978102
CAS
Article
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414
Article
PubMed
Google Scholar
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. https://doi.org/10.1126/science.1223813
CAS
Article
PubMed
Google Scholar
Lee W-J, Hase K (2014) Gut microbiota–generated metabolites in animal health and disease. Nat Chem Biol 10(6):416–424. https://doi.org/10.1038/nchembio.1535
CAS
Article
PubMed
Google Scholar
Jayachandran M, Chung SSM, Xu B (2019) A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1632789
Article
PubMed
Google Scholar
Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between %3cem%3eAkkermansia muciniphila%3c/em%3e and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110
Article
PubMed
PubMed Central
Google Scholar
Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW, Lee M-S, Bae J-W (2014) An increase in the %3cem%3eAkkermansia%3c/em%3e spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839
CAS
Article
PubMed
Google Scholar
Liu S, Li F, Zhang X (2019) Structural modulation of gut microbiota reveals coix seed contributes to weight loss in mice. Appl Microbiol Biotechnol 103(13):5311–5321. https://doi.org/10.1007/s00253-019-09786-z
CAS
Article
PubMed
Google Scholar
Li Y, Cui Y, Lu F, Wang X, Liao X, Hu X, Zhang Y (2019) Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice. J Funct Foods 60:103436. https://doi.org/10.1016/j.jff.2019.103436
CAS
Article
Google Scholar
Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36(6):817–825. https://doi.org/10.1038/ijo.2011.153
CAS
Article
Google Scholar
Chen J, Wang R, Li X-F, Wang R-L (2011) Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 107(10):1429–1434. https://doi.org/10.1017/S0007114511004491
CAS
Article
PubMed
Google Scholar
Wang P, Li D, Ke W, Liang D, Hu X, Chen F (2019) Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes. https://doi.org/10.1038/s41366-019-0332-1
Article
Google Scholar
Gan R-Y, Deng Z-Q, Yan A-X, Shah NP, Lui W-Y, Chan C-L, Corke H (2016) Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT 73:168–177. https://doi.org/10.1016/j.lwt.2016.06.012
CAS
Article
Google Scholar
Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54(3):325–341. https://doi.org/10.1007/s00394-015-0852-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Ozdal T, Sela DA, Xiao JB, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8(2):36. https://doi.org/10.3390/nu8020078
CAS
Article
Google Scholar
Myint H, Kishi H, Iwahashi Y, Saburi W, Koike S, Kobayashi Y (2018) Functional modulation of caecal fermentation and microbiota in rat by feeding bean husk as a dietary fibre supplement. Benef Mirbobes 9(6):963–974. https://doi.org/10.3920/bm2017.0174
CAS
Article
Google Scholar
Yang L, Zhao Y, Huang J, Zhang H, Lin Q, Han L, Liu J, Wang J, Liu H (2019) Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. J Food Sci Technol. https://doi.org/10.1007/s13197-019-04041-9
Article
PubMed
PubMed Central
Google Scholar
Forgie AJ, Gao Y, Ju T, Pepin DM, Yang K, Gänzle MG, Ozga JA, Chan CB, Willing BP (2019) Pea polyphenolics and hydrolysis processing alter microbial community structure and early pathogen colonization in mice. J Nutr Biochem 67:101–110. https://doi.org/10.1016/j.jnutbio.2019.01.012
CAS
Article
PubMed
Google Scholar