Skip to main content

Advertisement

Log in

Association of milk consumption frequency on muscle mass and strength: an analysis of three representative Korean population studies

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Sarcopenia is an involuntary loss of muscle mass, strength, and physical performance associated with aging. Sarcopenia contributes to adverse health outcomes. Milk contains essential amino acids important for maintaining muscle. We investigated the relationships among milk consumption frequency (MCF), muscle mass, and strength in Korean adults.

Methods

We analyzed the data from 16,173 adults in the 2008–2011 Korean National Health and Nutrition Examination Survey (KNHANES), 13,537 adults in the 2014–2016 KNHANES, and 8254 adults in the Korean Genome and Epidemiology Study (KoGES). MCF was divided into two groups: (1) MCF less than once per day (MCF < 1 group) and (2) MCF greater than or equal to once per day (MCF ≥ 1 group). Low skeletal muscle mass index (LSMI) was defined using the Foundation for the National Institutes of Health sarcopenia project criteria for low muscle mass. Muscle strength was measured using the hand-grip strength test.

Results

The odds ratio (95% confidence interval) for LSMI in the MCF < 1 group was 1.250 (1.013–1.543) after adjusting for confounding factors, compared with the MCF ≥ 1 group (2008–2011 KNHANES). The adjusted mean for hand-grip strength was higher in the MCF ≥ 1 group (2014–2016 KNHANES). After a mean follow-up of 9 years, fat-free mass/body mass index was higher in the MCF ≥ 1 group than the MCF < 1 group (KoGES).

Conclusion

We found that MCF ≥ 1 was significantly associated with higher skeletal muscle index and muscle strength than lower MCF. Milk consumption could help prevent sarcopenia in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset used in this study (the KNHANES and Ansan-Ansung cohort) can be provided after review and evaluation of the research plan by the Korea Centers for Disease Control and Prevention (https://www.cdc.go.kr/CDC/eng/main.jsp).

Abbreviations

RDA:

Recommended dietary allowance

MCF:

Milk consumption frequency

KNHANES:

Korean National Health and Nutrition Examination Survey

KoGES:

Korean Genome and Epidemiology Study

DXA:

Dual-energy X-ray absorptiometry

HGS:

Hand-grip strength

FFQ:

Food frequency questionnaire

BIA:

Bioelectrical impedance analysis

BMI:

Body mass index

IRB:

Institutional Review Board

ASM:

Appendicular skeletal muscle mass

LSMI:

Low skeletal muscle mass index

FNIH:

Foundation for the National Institutes of Health

SE:

Standard error

OR:

Odds ratio

CI:

Confidence interval

References

  1. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69(5):547–558. https://doi.org/10.1093/gerona/glu010

    Article  PubMed  PubMed Central  Google Scholar 

  2. Melton LJ 3rd, Khosla S, Crowson CS, O'Connor MK, O'Fallon WM, Riggs BL (2000) Epidemiology of sarcopenia. J Am Geriatr Soc 48(6):625–630

    Article  PubMed  Google Scholar 

  3. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older P (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  4. Zhang H, Lin S, Gao T, Zhong F, Cai J, Sun Y, Ma A (2018) Association between sarcopenia and metabolic syndrome in middle-aged and older non-obese adults: a systematic review and meta-analysis. NutrientsC. https://doi.org/10.3390/nu10030364

    Article  Google Scholar 

  5. Srikanthan P, Horwich TB, Tseng CH (2016) Relation of muscle mass and fat mass to cardiovascular disease mortality. Am J Cardiol 117(8):1355–1360. https://doi.org/10.1016/j.amjcard.2016.01.033

    Article  PubMed  Google Scholar 

  6. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2010) Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 33(7):1497–1499. https://doi.org/10.2337/dc09-2310

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clark BC, Manini TM (2008) Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci 63(8):829–834

    Article  PubMed  Google Scholar 

  8. Janssen I (2011) The epidemiology of sarcopenia. Clin Geriatr Med 27(3):355–363. https://doi.org/10.1016/j.cger.2011.03.004

    Article  PubMed  Google Scholar 

  9. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  Google Scholar 

  10. Beaudart C, Rizzoli R, Bruyere O, Reginster JY, Biver E (2014) Sarcopenia: burden and challenges for public health. Arch Public Health 72(1):45. https://doi.org/10.1186/2049-3258-72-45

    Article  PubMed  PubMed Central  Google Scholar 

  11. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85

    Article  PubMed  Google Scholar 

  12. Sousa AS, Guerra RS, Fonseca I, Pichel F, Ferreira S, Amaral TF (2016) Financial impact of sarcopenia on hospitalization costs. Eur J Clin Nutr 70(9):1046–1051. https://doi.org/10.1038/ejcn.2016.73

    Article  CAS  PubMed  Google Scholar 

  13. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, Visvanathan R, Volpi E, Boirie Y (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14(8):542–559. https://doi.org/10.1016/j.jamda.2013.05.021

    Article  PubMed  Google Scholar 

  14. Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NE, Doehner W, Fearon KC, Ferrucci L, Hellerstein MK, Kalantar-Zadeh K, Lochs H, MacDonald N, Mulligan K, Muscaritoli M, Ponikowski P, Posthauer ME, Rossi Fanelli F, Schambelan M, Schols AM, Schuster MW, Anker SD, Wasting D, Society for Sarcopenia C (2010) Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc 11(6):391–396. https://doi.org/10.1016/j.jamda.2010.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krznaric Z, Nair KS, Singer P, Teta D, Tipton K, Calder PC (2014) Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 33(6):929–936. https://doi.org/10.1016/j.clnu.2014.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davies RW, Carson BP, Jakeman PM (2018) The effect of whey protein supplementation on the temporal recovery of muscle function following resistance training: a systematic review and meta-analysis. Nutrients. https://doi.org/10.3390/nu10020221

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lonnie M, Hooker E, Brunstrom JM, Corfe BM, Green MA, Watson AW, Williams EA, Stevenson EJ, Penson S, Johnstone AM (2018) Protein for life: review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients 15:8. https://doi.org/10.3390/nu10030360

    Article  CAS  Google Scholar 

  18. Ministry of Health and Welfare (KR) (2016) Dietary reference intakes for Koreans 2015. Ministry of Health and Welfare, Sejong

    Google Scholar 

  19. Park HA (2018) Adequacy of Protein Intake among Korean Elderly: An Analysis of the 2013–2014 Korea National Health and Nutrition Examination Survey Data. Korean J Fam Med 39(2):130–134. https://doi.org/10.4082/kjfm.2018.39.2.130

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, Phillips SM (2007) Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86(2):373–381. https://doi.org/10.1093/ajcn/86.2.373

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson SB, Tarnopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85(4):1031–1040. https://doi.org/10.1093/ajcn/85.4.1031

    Article  CAS  PubMed  Google Scholar 

  22. Phillips SM, Tang JE, Moore DR (2009) The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr 28(4):343–354

    Article  CAS  PubMed  Google Scholar 

  23. van Vliet S, Burd NA, van Loon LJ (2015) The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J Nutr 145(9):1981–1991. https://doi.org/10.3945/jn.114.204305

    Article  PubMed  Google Scholar 

  24. Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ (2015) Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr 102(4):828–836. https://doi.org/10.3945/ajcn.114.103184

    Article  CAS  PubMed  Google Scholar 

  25. Rieu I, Balage M, Sornet C, Giraudet C, Pujos E, Grizard J, Mosoni L, Dardevet D (2006) Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol 575(Pt 1):305–315. https://doi.org/10.1113/jphysiol.2006.110742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drummond MJ, Rasmussen BB (2008) Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 11(3):222–226. https://doi.org/10.1097/MCO.0b013e3282fa17fb

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoffman JR, Falvo MJ (2004) Protein—which is best? J Sports Sci Med 3(3):118–130

    PubMed  PubMed Central  Google Scholar 

  28. Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, van Loon LJC (2018) Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50(12):1685–1695. https://doi.org/10.1007/s00726-018-2640-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schoenfeld BJ, Aragon AA (2018) How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J Int Soc Sports Nutr 15:10. https://doi.org/10.1186/s12970-018-0215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78(2):250–258. https://doi.org/10.1093/ajcn/78.2.250

    Article  CAS  PubMed  Google Scholar 

  31. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K (2014) Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 43(1):69–77. https://doi.org/10.1093/ije/dyt228

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim Y, Han BG, Ko GESg (2017) Cohort profile: the Korean Genome and Epidemiology Study (KoGES) Consortium. Int J Epidemiol 46(2):e20. https://doi.org/10.1093/ije/dyv316

    Article  PubMed  Google Scholar 

  33. Yun SH, Shim J-S, Kweon S, Oh K (2013) Development of a food frequency questionnaire for the Korea National Health and Nutrition Examination Survey: data from the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV). Korean J Nutr 46(2):186–196

    Article  Google Scholar 

  34. Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, Park C, Kim DH (2007) Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr 61(12):1435–1441. https://doi.org/10.1038/sj.ejcn.1602657

    Article  CAS  PubMed  Google Scholar 

  35. Meng NH, Li CI, Liu CS, Lin WY, Lin CH, Chang CK, Li TC, Lin CC (2015) Sarcopenia defined by combining height- and weight-adjusted skeletal muscle indices is closely associated with poor physical performance. J Aging Phys Act 23(4):597–606. https://doi.org/10.1123/japa.2014-0036

    Article  PubMed  Google Scholar 

  36. Wu Y-H, Hwang A-C, Liu L-K, Peng L-N, Chen L-K (2016) Sex differences of sarcopenia in Asian populations: the implications in diagnosis and management. J Clin Gerontol Geriatr 7(2):37–43. https://doi.org/10.1016/j.jcgg.2016.04.001

    Article  CAS  Google Scholar 

  37. Bedogni G, Malavolti M, Severi S, Poli M, Mussi C, Fantuzzi AL, Battistini N (2002) Accuracy of an eight-point tactile-electrode impedance method in the assessment of total body water. Eur J Clin Nutr 56(11):1143–1148. https://doi.org/10.1038/sj.ejcn.1601466

    Article  CAS  PubMed  Google Scholar 

  38. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C (2001) Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17(3):248–253

    Article  CAS  PubMed  Google Scholar 

  39. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  40. Organization WH (2000) The Asia–Pacific perspective: redefining obesity and its treatment. Health Communications Australia, Sydney

    Google Scholar 

  41. Seaman SR, White IR (2013) Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res 22(3):278–295. https://doi.org/10.1177/0962280210395740

    Article  PubMed  Google Scholar 

  42. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, Collamati A, D’Angelo E, Pahor M, Bernabei R, Landi F, Consortium (2017) Sarcopenia: an overview. Aging Clin Exp Res 29(1):11–17. https://doi.org/10.1007/s40520-016-0704-5

    Article  PubMed  Google Scholar 

  43. Broer S, Broer A (2017) Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J 474(12):1935–1963. https://doi.org/10.1042/BCJ20160822

    Article  CAS  PubMed  Google Scholar 

  44. Nicastro H, da Luz CR, Chaves DF, Bechara LR, Voltarelli VA, Rogero MM, Lancha AH Jr (2012) Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. J Nutr Metab 2012:136937. https://doi.org/10.1155/2012/136937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campbell WW (2007) Synergistic use of higher-protein diets or nutritional supplements with resistance training to counter sarcopenia. Nutr Rev 65(9):416–422

    Article  PubMed  Google Scholar 

  46. Fong BY, Norris CS, MacGibbon AKH (2007) Protein and lipid composition of bovine milk-fat-globule membrane. Int Dairy J 17(4):275–288. https://doi.org/10.1016/j.idairyj.2006.05.004

    Article  CAS  Google Scholar 

  47. Rankin P, Stevenson E, Cockburn E (2015) The effect of milk on the attenuation of exercise-induced muscle damage in males and females. Eur J Appl Physiol 115(6):1245–1261. https://doi.org/10.1007/s00421-015-3121-0

    Article  CAS  PubMed  Google Scholar 

  48. Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD (2006) Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc 38(4):667–674. https://doi.org/10.1249/01.mss.0000210190.64458.25

    Article  CAS  PubMed  Google Scholar 

  49. Mitchell CJ, Zeng N, D'Souza RF, Mitchell SM, Aasen K, Fanning AC, Poppitt SD, Cameron-Smith D (2017) Minimal dose of milk protein concentrate to enhance the anabolic signalling response to a single bout of resistance exercise; a randomised controlled trial. J Int Soc Sports Nutr 14:17. https://doi.org/10.1186/s12970-017-0175-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Draganidis D, Chondrogianni N, Chatzinikolaou A, Terzis G, Karagounis LG, Sovatzidis A, Avloniti A, Lefaki M, Protopapa M, Deli CK, Papanikolaou K, Jamurtas AZ, Fatouros IG (2017) Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans. Br J Nutr 118(3):189–200. https://doi.org/10.1017/S0007114517001829

    Article  CAS  PubMed  Google Scholar 

  51. D'Lugos AC, Luden ND, Faller JM, Akers JD, McKenzie AI, Saunders MJ (2016) Supplemental protein during heavy cycling training and recovery impacts skeletal muscle and heart rate responses but not performance. Nutrients. https://doi.org/10.3390/nu8090550

    Article  PubMed  PubMed Central  Google Scholar 

  52. Soga S, Ota N, Shimotoyodome A (2015) Dietary milk fat globule membrane supplementation combined with regular exercise improves skeletal muscle strength in healthy adults: a randomized double-blind, placebo-controlled, crossover trial. Nutr J 14:85. https://doi.org/10.1186/s12937-015-0073-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gryson C, Ratel S, Rance M, Penando S, Bonhomme C, Le Ruyet P, Duclos M, Boirie Y, Walrand S (2014) Four-month course of soluble milk proteins interacts with exercise to improve muscle strength and delay fatigue in elderly participants. J Am Med Dir Assoc 15(12):958e951-959. https://doi.org/10.1016/j.jamda.2014.09.011

    Article  Google Scholar 

  54. Kim H, Suzuki T, Kim M, Kojima N, Ota N, Shimotoyodome A, Hase T, Hosoi E, Yoshida H (2015) Effects of exercise and milk fat globule membrane (MFGM) supplementation on body composition, physical function, and hematological parameters in community-dwelling frail Japanese women: a randomized double blind, placebo-controlled, follow-up trial. PLoS ONE 10(2):e0116256. https://doi.org/10.1371/journal.pone.0116256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haramizu S, Mori T, Yano M, Ota N, Hashizume K, Otsuka A, Hase T, Shimotoyodome A (2014) Habitual exercise plus dietary supplementation with milk fat globule membrane improves muscle function deficits via neuromuscular development in senescence-accelerated mice. Springerplus 3:339. https://doi.org/10.1186/2193-1801-3-339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Z, Long W, Fryburg DA, Barrett EJ (2006) The regulation of body and skeletal muscle protein metabolism by hormones and amino acids. J Nutr 136(1 Suppl):212S–217S. https://doi.org/10.1093/jn/136.1.212S

    Article  CAS  PubMed  Google Scholar 

  57. Seo MH, Kim MK, Park SE, Rhee EJ, Park CY, Lee WY, Baek KH, Song KH, Kang MI, Oh KW (2013) The association between daily calcium intake and sarcopenia in older, non-obese Korean adults: the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV) 2009. Endocr J 60(5):679–686

    Article  CAS  PubMed  Google Scholar 

  58. Martone AM, Marzetti E, Calvani R, Picca A, Tosato M, Santoro L, Di Giorgio A, Nesci A, Sisto A, Santoliquido A, Landi F (2017) Exercise and protein intake: a synergistic approach against sarcopenia. Biomed Res Int 2017:2672435. https://doi.org/10.1155/2017/2672435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, Reginster JY, Chapurlat R, Chan DC, Bruyere O, Rizzoli R, Cooper C, Dennison EM, Group I-ESW (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 28(6):1817–1833. https://doi.org/10.1007/s00198-017-3980-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Denison HJ, Cooper C, Sayer AA, Robinson SM (2015) Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging 10:859–869. https://doi.org/10.2147/CIA.S55842

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mantoani LC, Rubio N, McKinstry B, MacNee W, Rabinovich RA (2016) Interventions to modify physical activity in patients with COPD: a systematic review. Eur Respir J 48(1):69–81. https://doi.org/10.1183/13993003.01744-2015

    Article  PubMed  Google Scholar 

  62. Bone AE, Hepgul N, Kon S, Maddocks M (2017) Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis 14(1):85–99. https://doi.org/10.1177/1479972316679664

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang SW, Kim TH, Choi HM (2018) The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. J Exerc Rehabil 14(4): 621–627. 10.12965/jer.1836284.142

  64. Chang YW, Park CG, Bang IS, Chang R, Yi M (1986) A study of lactose intolerance using breath hydrogen test in korean healthy adults. Korean J Med 30(5):643–648

    Google Scholar 

  65. Kim CY, Song IS, Kim JP, Paik SW, Chang SK, Chung HB, Kim HR (1986) Prevalence of lactase deficiency in Korean adults. Korean J Med 29(6):804–810

    Article  Google Scholar 

  66. Storhaug CL, Fosse SK, Fadnes LT (2017) Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2(10):738–746. https://doi.org/10.1016/S2468-1253(17)30154-1

    Article  PubMed  Google Scholar 

  67. Misselwitz B, Butter M, Verbeke K, Fox MR (2019) Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut 68(11):2080–2091. https://doi.org/10.1136/gutjnl-2019-318404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Technology Innovation Program (20002781, A Platform for Prediction and Management of Health Risk Based on Personal Big Data and Lifelogging) funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea).

Funding

Nothing to declare.

Author information

Authors and Affiliations

Authors

Contributions

JHL and HK developed the study concept and design. All authors contributed to the acquisition and interpretation of the data. HSL performed the statistical analysis. JHL and YJK prepared the first version of the manuscript. YJK and JWL revised the manuscript critically for essential intellectual content. All authors read and approved the final version to be published.

Corresponding authors

Correspondence to Yu-Jin Kwon or Ji-Won Lee.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Ethical approval

All participants participated in the survey voluntarily and provided written informed consent for the data collection. The Institutional Review Board of the Korea Center for Disease Control and Prevention reviewed and approved the KNHANES (IRB Nos. 2008-04EXP01-C, 2009-01CON-03-2C, 2010-02CON-21, 2011-02CON-06-C, and 2013-12EXP-03-5C). The Ansan-Ansung study protocol was reviewed and approved by the Institutional Review Board of the Korea Centers for Disease Control and Prevention, and all study participants signed written informed consent documents. This study was approved by the Institutional Review Board of Gangnam Severance hospital (IRB number: 3–2019-0070).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Lee, H.S., Kim, H. et al. Association of milk consumption frequency on muscle mass and strength: an analysis of three representative Korean population studies. Eur J Nutr 59, 3257–3267 (2020). https://doi.org/10.1007/s00394-019-02164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02164-5

Keywords

Navigation