Skip to main content

Adherence to the Mediterranean diet is associated with decreased fecal calprotectin in patients with ulcerative colitis after pouch surgery

Abstract

Background

Mediterranean diet (MED) is associated with health benefits, yet scarce data exist regarding the role of MED in inflammatory bowel diseases (IBD). Herein, we aimed to evaluate the association between MED and inflammatory markers in patients with IBD after pouch surgery.

Methods

Consecutive patients after pouch surgery due to ulcerative colitis (UC) were recruited at a comprehensive pouch clinic. Adherence to MED was calculated according to MED score, ranging from 0 (low adherence) to 9 (high adherence), based on food-frequency questionnaires. Pouch behavior was defined as normal pouch (NP) or pouchitis based on Pouchitis Disease Activity Index (PDAI) and disease activity was defined as active or inactive. C-reactive protein (CRP) and fecal calprotectin were assessed.

Results

Overall 153 patients were enrolled (male gender 47%; mean age 46 ± 14 years; mean pouch age 9.5 ± 7 years). MED scores were higher in patients with normal vs. elevated CRP and calprotectin levels (4.6 ± 1.8 vs. 4.4 ± 1.6, p = 0.28; 4.8 ± 1.8 vs. 4.07 ± 1.7, p < 0.05, respectively). In a multivariate regression, MED score was associated with decreased calprotectin levels (OR = 0.74 [0.56–0.99]). Adherence to MED was associated with dietary fiber and antioxidants intake. Finally, in a subgroup of patients with NP followed up for 8 years, higher adherence to MED trended to be inversely associated with the onset of pouchitis (log rank = 0.17).

Conclusions

In patients with UC after pouch surgery, adherence to MED is associated with decreased calprotectin levels. Thus, MED may have a role in modifying intestinal inflammation in IBD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ng SC, Shi HY, Hamidi N et al (2017) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390:2769–2778. https://doi.org/10.1016/S0140-6736(17)32448-0

    Article  PubMed  Google Scholar 

  2. Kaplan GG, Ng SC (2017) Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152:313–321.e2. https://doi.org/10.1053/j.gastro.2016.10.020

    Article  PubMed  Google Scholar 

  3. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499. https://doi.org/10.1053/j.gastro.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  4. Lee D, Albenberg L, Compher C et al (2015) Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 148:1087–1106. https://doi.org/10.1053/j.gastro.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  5. Lewis JD, Abreu MT (2017) Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology 152:398–414.e6. https://doi.org/10.1053/j.gastro.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  6. Levine A, Sigall Boneh R, Wine E (2018) Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut. https://doi.org/10.1136/gutjnl-2017-315866

    Article  PubMed  Google Scholar 

  7. Martinez-Medina M, Denizot J, Dreux N et al (2014) Western diet induces dysbiosis with increased E. coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 63:116–124. https://doi.org/10.1136/gutjnl-2012-304119

    Article  CAS  PubMed  Google Scholar 

  8. Chassaing B, Koren O, Goodrich JK et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. https://doi.org/10.1038/nature14232

    Article  PubMed  PubMed Central  Google Scholar 

  9. Racine A, Carbonnel F, Chan SSM et al (2016) Dietary patterns and risk of inflammatory bowel disease in europe: results from the EPIC study. Inflamm Bowel Dis. https://doi.org/10.1097/MIB.0000000000000638

    Article  PubMed  Google Scholar 

  10. Maconi G, Ardizzone S, Cucino C et al (2010) Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: a case-control study. World J Gastroenterol 16:4297–4304. https://doi.org/10.3748/wjg.v16.i34.4297

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sofi F, Cesari F, Abbate R et al (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337:a1344. https://doi.org/10.1136/bmj.a1344

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barrea L, Balato N, Di Somma C et al (2015) Nutrition and psoriasis: is there any association between the severity of the disease and adherence to the Mediterranean diet? J Transl Med. https://doi.org/10.1186/s12967-014-0372-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Phan C, Touvier M, Kesse-Guyot E et al (2018) Association between mediterranean anti-inflammatory dietary profile and severity of psoriasis: results from the NutriNet-Santé cohort. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2018.2127

    Article  PubMed  PubMed Central  Google Scholar 

  14. Philippou E, Nikiphorou E (2018) Are we really what we eat? Nutrition and its role in the onset of rheumatoid arthritis. Autoimmun Rev. https://doi.org/10.1016/j.autrev.2018.05.009

    Article  PubMed  Google Scholar 

  15. Johansson K, Askling J, Alfredsson L, Di Giuseppe D (2018) Mediterranean diet and risk of rheumatoid arthritis: a population-based case-control study. Arthritis Res Ther 20:175. https://doi.org/10.1186/s13075-018-1680-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forsyth C, Kouvari M, D’Cunha NM et al (2018) The effects of the Mediterranean diet on rheumatoid arthritis prevention and treatment: a systematic review of human prospective studies. Rheumatol Int 38:737–747. https://doi.org/10.1007/s00296-017-3912-1

    Article  PubMed  Google Scholar 

  17. Ananthakrishnan AN, Khalili H, Konijeti GG et al (2013) A prospective study of long-term intake of dietary fiber and risk of crohn’s disease and ulcerative colitis. Gastroenterology 145:970–977. https://doi.org/10.1053/J.GASTRO.2013.07.050

    Article  CAS  PubMed  Google Scholar 

  18. Ianco O, Tulchinsky H, Lusthaus M et al (2013) Diet of patients after pouch surgery may affect pouch inflammation. World J Gastroenterol 19:6458–6464. https://doi.org/10.3748/wjg.v19.i38.6458

    Article  PubMed  PubMed Central  Google Scholar 

  19. Godny L, Maharshak N, Reshef L et al (2019) Fruit consumption is associated with alterations in microbial composition and lower rates of pouchitis. J Crohns Colitis. https://doi.org/10.1093/ecco-jcc/jjz053

    Article  PubMed  Google Scholar 

  20. Li F, Liu X, Wang W, Zhang D (2015) Consumption of vegetables and fruit and the risk of inflammatory bowel disease: A meta-analysis. Eur J Gastroenterol Hepatol 27:623–630

    Article  PubMed  Google Scholar 

  21. Jakobsen C, Paerregaard A, Munkholm P, Wewer V (2013) Environmental factors and risk of developing paediatric inflammatory bowel disease—a population based study 2007–2009. J Crohn’s Colitis. https://doi.org/10.1016/j.crohns.2012.05.024

    Article  Google Scholar 

  22. Wong C, Harris PJ, Ferguson LR (2016) Potential benefits of dietary fibre intervention in inflammatory bowel disease. Int J Mol, Sci

    Book  Google Scholar 

  23. Camuesco D, Gálvez J (2005) Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. J Nutr. https://doi.org/10.1093/jn/135.4.687

    Article  PubMed  Google Scholar 

  24. Nunes S, Danesi F, Del Rio D, Silva P (2018) Resveratrol and inflammatory bowel disease: the evidence so far. Nutr Res Rev. https://doi.org/10.1017/S095442241700021X

    Article  PubMed  Google Scholar 

  25. Lorea Baroja M, Kirjavainen PV, Hekmat S, Reid G (2007) Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients. Clin Exp Immunol. https://doi.org/10.1111/j.1365-2249.2007.03434.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khalili H, Chan SSM, Lochhead P et al (2018) The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-018-0022-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Haskey N, Gibson D (2017) An examination of diet for the maintenance of remission in inflammatory bowel disease. Nutrients. https://doi.org/10.3390/nu9030259

    Article  PubMed  PubMed Central  Google Scholar 

  28. Forbes A, Escher J, Hébuterne X et al (2017) ESPEN guideline: clinical nutrition in inflammatory bowel disease. Clin Nutr 36:321–347. https://doi.org/10.1016/j.clnu.2016.12.027

    Article  PubMed  Google Scholar 

  29. Taylor L, Almutairdi A, Shommu N et al (2018) Cross-sectional analysis of overall dietary intake and Mediterranean dietary pattern in patients with Crohn’s Disease. Nutrients. https://doi.org/10.3390/nu10111761

    Article  PubMed  PubMed Central  Google Scholar 

  30. Melville DM, Ritchie JK, Nicholls RJ, Hawley PR (1994) Surgery for ulcerative colitis in the era of the pouch: the St Mark’s hospital experience. Gut 35:1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wexner SD, Wong WD, Rothenberger DA, Goldberg SM (1990) The ileoanal reservoir. Am J Surg 159:178–185. https://doi.org/10.1016/S0002-9610(05)80625-7

    Article  CAS  PubMed  Google Scholar 

  32. Marcello PW, Roberts PL, Schoetz DJ et al (1993) Long-term results of the ileoanal pouch procedure. Arch Surg 128:500–504. https://doi.org/10.1001/archsurg.1993.01420170030003

    Article  CAS  PubMed  Google Scholar 

  33. Sagar PM, Pemberton JH (2012) Intraoperative, postoperative and reoperative problems with ileoanal pouches. Br J Surg 99:454–468. https://doi.org/10.1002/bjs.8697

    Article  CAS  PubMed  Google Scholar 

  34. Yanai H, Ben-Shachar S, Mlynarsky L et al (2017) The outcome of ulcerative colitis patients undergoing pouch surgery is determined by pre-surgical factors. Aliment Pharmacol Ther 46:508–515. https://doi.org/10.1111/apt.14205

    Article  CAS  PubMed  Google Scholar 

  35. Tulchinsky H, Dotan I, Alper A et al (2008) Comprehensive pouch clinic concept for follow-up of patients after ileal pouch anal anastomosis: report of 3 years’ experience in a tertiary referral center. Inflamm Bowel Dis. https://doi.org/10.1002/ibd.20430

    Article  PubMed  Google Scholar 

  36. Tannock GW, Lawley B, Munro K et al (2012) Comprehensive analysis of the bacterial content of stool from patients with chronic pouchitis, normal pouches, or familial adenomatous polyposis pouches. Inflamm Bowel Dis 18:925–934. https://doi.org/10.1002/ibd.21936

    Article  PubMed  Google Scholar 

  37. McLaughlin SD, Walker AW, Churcher C et al (2010) The bacteriology of pouchitis: a molecular phylogenetic analysis using 16 s rRNA gene cloning and sequencing. Ann Surg 252:90–98. https://doi.org/10.1097/SLA.0b013e3181e3dc8b

    Article  PubMed  Google Scholar 

  38. Reshef L, Kovacs A, Ofer A et al (2015) Pouch inflammation is associated with a decrease in specific bacterial taxa. Gastroenterology 149:718–727. https://doi.org/10.1053/j.gastro.2015.05.041

    Article  PubMed  Google Scholar 

  39. Maharshak N, Cohen NA, Reshef L et al (2017) Alterations of enteric microbiota in patients with a normal ileal pouch are predictive of pouchitis. J Crohns Colitis 11:314–320. https://doi.org/10.1093/ecco-jcc/jjw157

    Article  PubMed  Google Scholar 

  40. Kaluski DN, Goldsmith R, Arie OMB et al (2000) The first Israeli national health and nutrition survey (MABAT) as a policy maker. Public Health Rev 28:23–26

    CAS  PubMed  Google Scholar 

  41. Goren I, Godny L, Reshef L et al (2018) Starch consumption may modify antiglycan antibodies and fecal fungal composition in patients with ileo-anal pouch. Inflamm Bowel Dis. https://doi.org/10.1093/ibd/izy370

    Article  Google Scholar 

  42. Montville JB, Ahuja JKC, Martin CL et al (2013) USDA food and nutrient database for dietary studies (FNDDS), 5.0. Procedia Food Sci 2:99–112. https://doi.org/10.1016/j.profoo.2013.04.016

    Article  Google Scholar 

  43. Sandborn WJ, Tremaine WJ, Batts KP et al (1994) Pouchitis after ileal pouch-anal anastomosis: a Pouchitis Disease Activity Index. Mayo Clin Proc 69:409–415. https://doi.org/10.1016/S0025-6196(12)61634-6

    Article  CAS  PubMed  Google Scholar 

  44. Ben-Shachar S, Yanai H, Baram L et al (2013) Gene expression profiles of ileal inflammatory bowel disease correlate with disease phenotype and advance understanding of its immunopathogenesis. Inflamm Bowel Dis 19:2509–2521. https://doi.org/10.1097/01.MIB.0000437045.26036.00

    Article  PubMed  Google Scholar 

  45. Strisciuglio C, Giugliano F, Martinelli M et al (2017) Impact of environmental and familial factors in a cohort of pediatric patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 64:569–574. https://doi.org/10.1097/MPG.0000000000001297

    Article  PubMed  Google Scholar 

  46. D’Souza S, Levy E, Mack D et al (2008) Dietary patterns and risk for Crohn’s disease in children. Inflamm Bowel Dis 14:367–373. https://doi.org/10.1002/ibd.20333

    Article  PubMed  Google Scholar 

  47. Marlow G, Ellett S, Ferguson IR et al (2013) Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum Genom 7:24. https://doi.org/10.1186/1479-7364-7-24

    Article  CAS  Google Scholar 

  48. Papada E, Amerikanou C, Forbes A, Kaliora AC (2019) Adherence to Mediterranean diet in Crohn’s disease. Eur J Nutr. https://doi.org/10.1007/s00394-019-01972-z

    Article  PubMed  Google Scholar 

  49. Fabisiak N, Fabisiak A, Watala C, Fichna J (2017) Fat-soluble Vitamin Deficiencies and Inflammatory Bowel Disease: Systematic Review and Meta-Analysis. J. Clin. Gastroenterol 51:878–889

    Article  CAS  PubMed  Google Scholar 

  50. Kruis W, Phuong Nguyen G (2016) Iron deficiency, zinc, magnesium, vitamin deficiencies in Crohn’s disease: substitute or not? Dig Dis. https://doi.org/10.1159/000443012

    Article  PubMed  Google Scholar 

  51. Aguilar-Tablada TC, Navarro-Alarcón M, Granados JQ et al (2016) Ulcerative colitis and Crohn’s disease are associated with decreased serum selenium concentrations and increased cardiovascular risk. Nutrients. https://doi.org/10.3390/nu8120780

    Article  Google Scholar 

  52. Weisshof R, Chermesh I (2015) Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. https://doi.org/10.1097/MCO.0000000000000226

    Article  PubMed  Google Scholar 

  53. Zammit SC, Ellul P, Girardin G et al (2018) Vitamin D deficiency in a European inflammatory bowel disease inception cohort: an Epi-IBD study. Eur J Gastroenterol Hepatol. https://doi.org/10.1097/MEG.0000000000001238

    Article  Google Scholar 

  54. Pan Y, Liu Y, Guo H et al (2017) Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients. https://doi.org/10.3390/nu9040382

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fritz J, Walia C, Elkadri A et al (2019) A systematic review of micronutrient deficiencies in pediatric inflammatory bowel disease. Inflamm Bowel Dis. https://doi.org/10.1093/ibd/izy271

    Article  PubMed  Google Scholar 

  56. Fransen K, Franzén P, Magnuson A et al (2013) Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohn’s disease. PLoS One. https://doi.org/10.1371/journal.pone.0072739

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chenery A, Burrows K, Antignano F et al (2013) The retinoic acid-metabolizing enzyme Cyp26b1 regulates CD4 T cell differentiation and function. PLoS One. https://doi.org/10.1371/journal.pone.0072308

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cantorna MT, Zhu Y, Froicu M, Wittke A (2004) Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. https://doi.org/10.1093/ajcn/80.6.1717S

    Article  PubMed  Google Scholar 

  59. Reich KM, Fedorak RN, Madsen K, Kroeker KI (2014) Vitamin D improves inflammatory bowel disease outcomes: Basic science and clinical review. World J Gastroenterol. https://doi.org/10.3748/wjg.v20.i17.4934

    Article  PubMed  PubMed Central  Google Scholar 

  60. Isozaki Y, Yoshida N, Kuroda M et al (2006) Effect of a novel water-soluble vitamin E derivative as a cure for TNBS-induced colitis in rats. Int J Mol Med 17:497–502

    CAS  PubMed  Google Scholar 

  61. Shiraishi E, Iijima H, Shinzaki S et al (2016) Vitamin K deficiency leads to exacerbation of murine dextran sulfate sodium-induced colitis. J Gastroenterol. https://doi.org/10.1007/s00535-015-1112-x

    Article  PubMed  Google Scholar 

  62. Chang YL, Rossetti M, Vlamakis H et al (2019) A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol. https://doi.org/10.1038/s41385-018-0022-7

    Article  PubMed  Google Scholar 

  63. Yan H, Wang H, Zhang X et al (2015) Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice. Int J Clin Exp Med 8:20245–202453

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shaghaghi MA, Bernstein CN, León AS et al (2014) Polymorphisms in the sodium-dependent ascorbate transporter gene SLC23A1 are associated with susceptibility to Crohn disease1-3. Am J Clin Nutr. https://doi.org/10.3945/ajcn.113.068015

    Article  Google Scholar 

  65. De Filippis F, Pellegrini N, Vannini L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. https://doi.org/10.1136/gutjnl-2015-309957

    Article  PubMed  Google Scholar 

  66. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–594. https://doi.org/10.1053/j.gastro.2007.11.059

    Article  CAS  PubMed  Google Scholar 

  67. Arpón A, Milagro FI, Razquin C et al (2018) Impact of consuming extra-virgin olive oil or nuts within a mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-navarra randomized controlled trial: a role for dietary lipids. Nutrients. https://doi.org/10.3390/nu10010015

    Article  Google Scholar 

Download references

Funding

This study was supported, in part, by a grant from the Leona M. and Harry B. Helmsley Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dotan.

Ethics declarations

Conflict of interest

The authors of this manuscript report no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godny, L., Reshef, L., Pfeffer-Gik, T. et al. Adherence to the Mediterranean diet is associated with decreased fecal calprotectin in patients with ulcerative colitis after pouch surgery. Eur J Nutr 59, 3183–3190 (2020). https://doi.org/10.1007/s00394-019-02158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02158-3

Keywords