Skip to main content
Log in

Contribution of iodized salt to total iodine and total salt intake in Germany

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Salt reduction campaigns without a parallel increase of iodine fortification will lead to a worsened iodine status in countries with a relevant salt iodization. A decline in iodine supply bears the risk of higher prevalences of goiter, thyroid nodules, and cognitive delay in children. Against this background, we analyzed the contribution of iodized salt to total iodine and salt intake in Germany and compared the results with data from Switzerland.

Methods

Analyses were performed with data of the representative German Health-Interview and Examination-Survey for Adults (DEGS1, 2008–2011) using spot urine measurements of creatinine, iodine, and sodium (n = 6738). Median daily iodine and salt intakes were calculated by estimating 24-h iodine and sodium excretions from urinary analyte/creatinine ratios. Linear regressions were used to deduce iodine intake that originates from iodine containing foods (i.e., salt-independent iodine). From this, ingested iodine originating from salt and the proportion of iodized salt to total salt intake were calculated. Data from Switzerland were obtained from the literature.

Results

In Germany, only 42% (52.2 µg/d) of the predicted median total iodine intake (126.2 µg/d), i.e., 12% less than in Switzerland, were found to originate from salt, whereas 73.7 µg/d came from iodine containing foods. 28% (2.6 g/d) of the median salt intake (9.3 g/d) of the German population was calculated to represent iodized salt against 43% in Switzerland.

Conclusions

Along with an almost identical inherent iodine intake in Germany and Switzerland, the average total iodine intake, the contribution of iodized salt to total iodine intake, and the proportion of iodized salt to total salt are higher in Switzerland than in Germany. Despite this, iodine fortification of table salt has recently been increased in Switzerland from 20 to 25 mg/kg to ensure iodine sufficiency in the population, whereas in Germany fortification still remains at a mean level of 20 mg/kg implying a growing risk of increasing iodine deficiency rates if general salt intake drops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DEGS1:

German Health Interview and Examination Survey for Adults

RKI:

Robert Koch Institute

References

  1. Velasco I, Bath SC, Rayman MP (2018) Iodine as essential nutrient during the first 1000 days of life. Nutrients 10(3):290. https://doi.org/10.3390/nu10030290

    Article  CAS  PubMed Central  Google Scholar 

  2. Andersson M, Karumbunathan V, Zimmermann MB (2012) Global iodine status in 2011 and trends over the past decade. J Nutr 142(4):744–750. https://doi.org/10.3945/jn.111.149393

    Article  CAS  PubMed  Google Scholar 

  3. Vanderpump MP (2017) Epidemiology of iodine deficiency. Minerva Med 108(2):116–123. https://doi.org/10.23736/S0026-4806.16.04918-1

    Article  PubMed  Google Scholar 

  4. Aburto NJ, Ziolkovska A, Hooper L et al (2013) Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346:f1326. https://doi.org/10.1136/bmj.f1326

    Article  PubMed  PubMed Central  Google Scholar 

  5. He FJ, Li J, Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: cochrane systematic review and meta-analysis of randomised trials. BMJ 346:f1325. https://doi.org/10.1136/bmj.f1325

    Article  PubMed  Google Scholar 

  6. Alderman MH, Cohen H (2014) Lower sodium intake reduces blood pressure in adults and children, but is not associated with a reduced risk of all CVD or all cause mortality. Evid Based Med 19(1):33–34. https://doi.org/10.1136/eb-2013-101385

    Article  PubMed  Google Scholar 

  7. Bochud M, Marques-Vidal P, Burnier M et al (2011) Dietary salt intake and cardiovascular disease: summarizing the evidence. Public Health Rev 33(2):530–552. https://doi.org/10.1007/BF03391649

    Article  Google Scholar 

  8. Organisation mondiale de la santé (2007) Prevention of cardiovascular disease: guidelines for assessment and management of cardiovascular risk. World Health Organization, Geneva

    Google Scholar 

  9. Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE),Schweizerische Gesellschaft für Ernährungsforschung (SGE), Schweizerische Vereinigung für Ernährung (2000) Referenzwerte für die Nährstoffzufuhr., 1. Auflage. Umschau-Brauns-Verlag, Frankfurt a. Main

  10. Köhler M, Fechner A, Leiterer M et al (2012) Iodine content in milk from German cows and in human milk: new monitoring study. Trace Elements Electrolytes 29(04):119–126

    Article  Google Scholar 

  11. Publications Office of the European Union (Luxembourg) (2012) Implementation of the EU salt reduction framework: results of member states survey. Publications Office of the European Union, Luxembourg

    Google Scholar 

  12. Johner SA, Thamm M, Schmitz R et al (2016) Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment. Eur J Nutr 55(3):1275–1282. https://doi.org/10.1007/s00394-015-0941-y

    Article  CAS  PubMed  Google Scholar 

  13. World Health Organization (2014) Salt reduction and iodine fortification strategies in public health: report of a joint technical meeting convened by the World Health Organization and The George Institute for Global Health in collaboration with the International Council for the Control of Iodine Deficiency Disorders Global Network, Sydney, Australia. https://www.who.int/nutrition/publications/publichealth_saltreduc_iodine_fortification/en/. Accessed 6 Nov 2019

  14. Remer T, Neubert A (1998) A never-ending story of an insufficient iodine status without mandatory iodization of foods?: a German experience. J Clin Endocrinol Metab 83(10):3755–3756. https://doi.org/10.1210/jc.83.10.3755-a

    Article  CAS  PubMed  Google Scholar 

  15. Haldimann M, Bochud M, Burnier M et al (2015) Prevalence of iodine inadequacy in Switzerland assessed by the estimated average requirement cut-point method in relation to the impact of iodized salt. Public Health Nutr 18(8):1333–1342. https://doi.org/10.1017/S1368980014002018

    Article  PubMed  Google Scholar 

  16. Scheidt-Nave C, Kamtsiuris P, Gößwald A et al (2012) German health interview and examination survey for adults (DEGS): design, objectives and implementation of the first data collection wave. BMC Public Health 12:730. https://doi.org/10.1186/1471-2458-12-730

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kamtsiuris P, Lange M, Hoffmann R et al (2013) Die erste Welle der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1): stichprobendesign, Response, Gewichtung und Repräsentativität (The first wave of the German Health Interview and Examination Survey for Adults (DEGS1): sample design, response, weighting and representativeness). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56(5–6):620–630. https://doi.org/10.1007/s00103-012-1650-9

    Article  CAS  PubMed  Google Scholar 

  18. Ittermann T, Johner S, Below H et al (2018) Interlaboratory variability of urinary iodine measurements. Clin Chem Lab Med 56(3):441–447. https://doi.org/10.1515/cclm-2017-0580

    Article  CAS  PubMed  Google Scholar 

  19. Montenegro-Bethancourt G, Johner SA, Stehle P et al (2015) Iodine status assessment in children: spot urine iodine concentration reasonably reflects true twenty-four-hour iodine excretion only when scaled to creatinine. Thyroid 25(6):688–697. https://doi.org/10.1089/thy.2015.0006

    Article  CAS  PubMed  Google Scholar 

  20. Remer T, Neubert A, Maser-Gluth C (2002) Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr 75(3):561–569. https://doi.org/10.1093/ajcn/75.3.561

    Article  CAS  PubMed  Google Scholar 

  21. Vejbjerg P, Knudsen N, Perrild H et al (2009) Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid 19(11):1281–1286. https://doi.org/10.1089/thy.2009.0094

    Article  CAS  PubMed  Google Scholar 

  22. Johner SA, Boeing H, Thamm M et al (2015) Urinary 24-h creatinine excretion in adults and its use as a simple tool for the estimation of daily urinary analyte excretion from analyte/creatinine ratios in populations. Eur J Clin Nutr 69(12):1336–1343. https://doi.org/10.1038/ejcn.2015.121

    Article  CAS  PubMed  Google Scholar 

  23. Perrine CG, Cogswell ME, Swanson CA et al (2014) Comparison of population iodine estimates from 24-hour urine and timed-spot urine samples. Thyroid 24(4):748–757. https://doi.org/10.1089/thy.2013.0404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johner SA, Thamm M, Schmitz R et al (2015) Current daily salt intake in Germany: biomarker-based analysis of the representative DEGS study. Eur J Nutr 54(7):1109–1115. https://doi.org/10.1007/s00394-014-0787-8

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30(4):376–408. https://doi.org/10.1210/er.2009-0011

    Article  CAS  PubMed  Google Scholar 

  26. Zimmermann MB (2008) Methods to assess iron and iodine status. Br J Nutr 99(Suppl 3):9. https://doi.org/10.1017/S000711450800679X

    Article  CAS  Google Scholar 

  27. Bundesamt für Lebensmittelsicherheit und Veterinärwesen (2014) Jodgehalt in Kochsalz wird erhöht (https://www.admin.ch/gov/de/start/dokumentation/medienmitteilungen.msg-id-51580.html). Accessed 6 Nov 2019

  28. EFSA (European Food Safety Authority) (2006) Scientific committee on food scientific panel on dietetic products, nutrition and allergies. Tolerable upper intake levels for vitamins and minerals. https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf. Accessed 6 Nov 2019

  29. Harnack LJ, Cogswell ME, Shikany JM et al (2017) Sources of sodium in US adults from 3 geographic regions. Circulation 135(19):1775–1783. https://doi.org/10.1161/CIRCULATIONAHA.116.024446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohlhorst SD, Slavin M, Bhide JM et al (2012) Use of iodized salt in processed foods in select countries around the world and the role of food processors. Compr Rev Food Science Food Saf 11(2):233–284

    Article  CAS  Google Scholar 

  31. Bissinger K, Busl L, Dudenhöfer C et al. (2018) Repräsentative Markterhebung zur Verwendung von Jodsalz in handwerklich und industriell gefertigten Lebensmitteln: Abschlussbericht zum Forschungsprojekt zur Bereitstellung wissenschaftlicher Entscheidungshilfe für das Bundesministerium für Ernährung und Landwirtschaft (BMEL), Gießen

  32. Andersson M, Hunziker S, Fingerhut R et al (2019) Effectiveness of increased salt iodine concentration on iodine status: trend analysis of cross-sectional national studies in Switzerland. Eur J Nutr. https://doi.org/10.1007/s00394-019-01927-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cogswell ME, Wang C-Y, Chen T-C et al (2013) Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y. Am J Clin Nutr 98(6):1502–1513. https://doi.org/10.3945/ajcn.113.059436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kesteloot H, Joossens JV (1996) On the determinants of the creatinine clearance: a population study. J Hum Hypertens 10(4):245–249

    CAS  PubMed  Google Scholar 

  35. Zimmermann MB, Hussein I, Al Ghannami S et al (2016) Estimation of the prevalence of inadequate and excessive iodine intakes in school-age children from the adjusted distribution of urinary iodine concentrations from population surveys. J Nutr 146(6):1204–1211. https://doi.org/10.3945/jn.115.229005

    Article  CAS  PubMed  Google Scholar 

  36. Wang C-Y, Cogswell ME, Loria CM et al (2013) Urinary excretion of sodium, potassium, and chloride, but not iodine, varies by timing of collection in a 24-hour calibration study. J Nutr 143(8):1276–1282. https://doi.org/10.3945/jn.113.175927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the German Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany, granted by the Federal Office for Agriculture and Food (BLE; Grant number: 2817HS007). DEGS1 was financially supported by the German Ministry of Health.

Author information

Authors and Affiliations

Authors

Contributions

TR designed the research and was responsible for the project conception. JE and TR were responsible for statistical analyses and interpretation of the data. JE drafted the manuscript, together with TR. MT took responsibility for urinary measurements. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Thomas Remer.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esche, J., Thamm, M. & Remer, T. Contribution of iodized salt to total iodine and total salt intake in Germany. Eur J Nutr 59, 3163–3169 (2020). https://doi.org/10.1007/s00394-019-02154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02154-7

Keywords

Navigation