Abstract
Purpose
Wheat is a frequent elicitor of food allergy in childhood. Especially in popular media, the better digestibility and the lower allergenicity of ancient grains are repeatedly postulated. We addressed the question whether ancient wheat-related grains are less allergenic than modern wheat.
Methods
Proteins from cultivars of spelt, einkorn, emmer and durum along with durum soft wheat flour, Tritordeum and bread wheat were separated by electrophoresis. Immunoblots were performed with a pool serum of six sera from wheat-sensitized children aged 1–11 years (wheat-specific IgE 22 kUA/l). As controls, pool serum from five sera atopic patients aged 3–13 years who had no sensitization to wheat (wheat-specific IgE 0.11 kUA/l) and six sera from non-atopics at the age of 3 months to 5 years (wheat-specific IgE 0.06 kUA/l) was used. Area under the curve (AUC) in Coomassie-stained gels and immunoblots was determined and related.
Results
Water/salt-soluble protein patterns were very similar among varieties. In einkorn cultivars, one protein band corresponding to an alpha-amylase/trypsin inhibitor (ATI) was absent. Water-insoluble protein fractions differed markedly among varieties and cultivars. IgE bound to a large number of proteins in all protein fractions both in wheat and in the wheat-related ancient grains.
Conclusions
Patients with sensitization to wheat show a significant IgE binding against both modern and ancient grain varieties of the genus Triticum. Therefore, ancient grains do not appear to have a generally reduced risk for wheat allergy sufferers. However, few individuals only sensitized to ATI could benefit from the consumption of einkorn.
Similar content being viewed by others
References
Pasha I, Saeed F, Sultan MT, Batool R, Aziz M, Ahmed W (2016) Wheat allergy and intolerance; recent updates and perspectives. Crit Rev Food Sci Nutr 56(1):13–24. https://doi.org/10.1080/10408398.2012.659818
Garcia-Manzanares A, Lucendo AJ (2011) Nutritional and dietary aspects of celiac disease. Nutr Clin Pract 26(2):163–173. https://doi.org/10.1177/0884533611399773
Brouns F, Gilissen L, Shewry P, van Straaten F (2015) The war on wheat. World Food Ingred 30–31
Bordoni A, Danesi F, Di Nunzio M, Taccari A, Valli V (2016) Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat. Int J Food Sci Nutr. https://doi.org/10.1080/09637486.2016.1247434
Cooper R (2015) Re-discovering ancient wheat varieties as functional foods. J Tradit Complement Med 5(3):138–143. https://doi.org/10.1016/j.jtcme.2015.02.004
Davis W (2011) Wheat belly: lose the wheat, lose the weight, and find your path back to health. Rodale Books
Dinu M, Whittaker A, Pagliai G, Benedettelli S, Sofi F (2017) Ancient wheat species and human health: biochemical and clinical implications. J Nutr Biochem 52:1–9. https://doi.org/10.1016/j.jnutbio.2017.09.001
Shewry PR (2018) Do ancient types of wheat have health benefits compared with modern bread wheat? J Cereal Sci 79:469–476. https://doi.org/10.1016/j.jcs.2017.11.010
Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C, Sodergren E, Dahlstrom J, Lindner T, Sigurdardottir ST, McBride D, Keil T (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121(5):1210–1218.e1214. https://doi.org/10.1016/j.jaci.2008.02.019
Inomata N (2009) Wheat allergy. Curr Opin Allergy Clin Immunol 9(3):238–243. https://doi.org/10.1097/ACI.0b013e32832aa5bc
Venter C, Arshad SH (2011) Epidemiology of food allergy. Pediatr Clin North Am 58(2):327–349
Worm M, Eckermann O, Dölle S, Aberer W, Beyer K, Hawranek T, Hompes S, Koehli A, Mahler V, Nemat K, Niggemann B, Pföhler C, Rabe U, Reissig A, Rietschel E, Scherer K, Treudler R, Ruëff F (2014) Triggers and Treatment of Anaphylaxis. Dtsch Arztebl Int 111(21):367–375. https://doi.org/10.3238/arztebl.2014.0367
Brisman J (2002) Baker’s asthma. Occup Environ Med 59(7):498–502
Olivieri M, Biscardo CA, Palazzo P, Pahr S, Malerba G, Ferrara R, Zennaro D, Zanoni G, Xumerle L, Valenta R, Mari A (2013) Wheat IgE profiling and wheat IgE levels in bakers with allergic occupational phenotypes. Occup Environ Med 70(9):617–622
Denery-Papini S, Bodinier M, Larre C, Brossard C, Pineau F, Triballeau S, Pietri M, Battais F, Mothes T, Paty E, Moneret-Vautrin DA (2012) Allergy to deamidated gluten in patients tolerant to wheat: specific epitopes linked to deamidation. Allergy 67(8):1023–1032
Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, Hadjivassiliou M, Kaukinen K, Kelly CP, Leonard JN, Lundin KE, Murray JA, Sanders DS, Walker MM, Zingone F, Ciacci C (2013) The Oslo definitions for coeliac disease and related terms. Gut 62(1):43–52. https://doi.org/10.1136/gutjnl-2011-301346
Reese I, Schafer C, Kleine-Tebbe J, Ahrens B, Bachmann O, Ballmer-Weber B, Beyer K, Bischoff SC, Blumchen K, Dolle S, Enck P, Enninger A, Huttegger I, Lammel S, Lange L, Lepp U, Mahler V, Monnikes H, Ockenga J, Otto B, Schnadt S, Szepfalusi Z, Treudler R, Wassmann-Otto A, Zuberbier T, Werfel T, Worm M (2018) Non-celiac gluten/wheat sensitivity (NCGS)-a currently undefined disorder without validated diagnostic criteria and of unknown prevalence: position statement of the task force on food allergy of the German Society of Allergology and Clinical Immunology (DGAKI). Allergo J Int 27(5):147–151. https://doi.org/10.1007/s40629-018-0070-2
Catassi C, Alaedini A, Bojarski C, Bonaz B, Bouma G, Carroccio A, Castillejo G, De Magistris L, Dieterich W, Di Liberto D, Elli L, Fasano A, Hadjivassiliou M, Kurien M, Lionetti E, Mulder CJ, Rostami K, Sapone A, Scherf K, Schuppan D, Trott N, Volta U, Zevallos V, Zopf Y, Sanders DS (2017) The overlapping area of non-celiac gluten sensitivity (NCGS) and wheat-sensitive irritable bowel syndrome (IBS): an update. Nutrients. https://doi.org/10.3390/nu9111268
Salvi S, Porfiri O, Ceccarelli S (2013) Nazareno Strampelli, the ‘Prophet’ of the green revolution. J Agric Sci 151(1):1–5. https://doi.org/10.1017/S0021859612000214
Reale A, Trevisan M, Alvisi G, Palu G (2018) The silent enemy: celiac disease goes viral. J Cell Physiol 233(4):2693–2694. https://doi.org/10.1002/jcp.26155
Kahlenberg F, Sanchez D, Lachmann I, Tuckova L, Tlaskalova H, Méndez E, Mothes T (2006) Monoclonal antibody R5 for detection of putatively coeliac-toxic gliadin peptides. Eur Food Res Technol 222(1):78–82. https://doi.org/10.1007/s00217-005-0100-4
Huebener S, Tanaka CK, Uhde M, Zone JJ, Vensel WH, Kasarda DD, Beams L, Briani C, Green PH, Altenbach SB, Alaedini A (2015) Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J Proteome Res 14(1):503–511. https://doi.org/10.1021/pr500809b
Gianfrani C, Maglio M, Rotondi Aufiero V, Camarca A, Vocca I, Iaquinto G, Giardullo N, Pogna N, Troncone R, Auricchio S, Mazzarella G (2012) Immunogenicity of monococcum wheat in celiac patients. Am J Clin Nutr 96(6):1339–1345. https://doi.org/10.3945/ajcn.112.040485
Valerii MC, Ricci C, Spisni E, Di Silvestro R, De Fazio L, Cavazza E, Lanzini A, Campieri M, Dalpiaz A, Pavan B, Volta U, Dinelli G (2015) Responses of peripheral blood mononucleated cells from non-celiac gluten sensitive patients to various cereal sources. Food Chem 176:167–174. https://doi.org/10.1016/j.foodchem.2014.12.061
Ribeiro M, Rodriguez-Quijano M, Nunes FM, Carrillo JM, Branlard G, Igrejas G (2016) New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food chemistry 213(Supplement C):8–18. https://doi.org/10.1016/j.foodchem.2016.06.043
Dubois B, Bertin P, Mingeot D (2016) Molecular diversity of alpha-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species. Mol Breed 36(11):152. https://doi.org/10.1007/s11032-016-0569-5
Iacomino G, Di Stasio L, Fierro O, Picariello G, Venezia A, Gazza L, Ferranti P, Mamone G (2016) Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium. Food Chem 212:537–542. https://doi.org/10.1016/j.foodchem.2016.06.014
Prandi B, Tedeschi T, Folloni S, Galaverna G, Sforza S (2017) Peptides from gluten digestion: a comparison between old and modern wheat varieties. Food Res Int 91:92–102. https://doi.org/10.1016/j.foodres.2016.11.034
Gianfrani C, Camarca A, Mazzarella G, Di Stasio L, Giardullo N, Ferranti P, Picariello G, Rotondi Aufiero V, Picascia S, Troncone R, Pogna N, Auricchio S, Mamone G (2015) Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: implication for celiac disease. Mol Nutr Food Res 59(9):1844–1854. https://doi.org/10.1002/mnfr.201500126
Lombardo C, Bolla M, Chignola R, Senna G, Rossin G, Caruso B, Tomelleri C, Cecconi D, Brandolini A, Zoccatelli G (2015) Study on the immunoreactivity of Triticum monococcum (Einkorn) wheat in patients with wheat-dependent exercise-induced anaphylaxis for the production of hypoallergenic foods. J Agric Food Chem 63(37):8299–8306. https://doi.org/10.1021/acs.jafc.5b02648
Klockenbring T, Boese A, Bauer R, Goerlich R (2001) Comparative investigations of wheat and spelt cultivars: IgA, IgE, IgG1 and IgG4 binding characteristics. Food Agric Immunol 13(3):171–181. https://doi.org/10.1080/09540100120075826
Vu NT, Chin J, Pasco JA, Kovács A, Wing LW, Békés F, Suter DAI (2015) The prevalence of wheat and spelt sensitivity in a randomly selected Australian population. Cereal Res Commun 43(1):97–107. https://doi.org/10.1556/crc.2014.0026
Sievers S, Rawel HM, Ringel KP, Niggemann B, Beyer K (2016) Wheat protein recognition pattern in tolerant and allergic children. Pediatr Allergy Immunol 27(2):147–155. https://doi.org/10.1111/pai.12502
Haberer G, Mayer KF, Spannagl M (2016) The big five of the monocot genomes. Curr Opin Plant Biol 30:33–40. https://doi.org/10.1016/j.pbi.2016.01.004
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Stein N, Choulet F, Distelfeld A, Eversole K, Poland J, Rogers J, Ronen G, Sharpe AG, Pozniak C, Ronen G, Stein N, Barad O, Baruch K, Choulet F, Keeble-Gagnère G, Mascher M, Sharpe AG, Ben-Zvi G, Josselin A-A, Stein N, Mascher M, Himmelbach A, Choulet F, Keeble-Gagnère G, Mascher M, Rogers J, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Josselin A-A, Koh C, Muehlbauer G, Pasam RK, Paux E, Pozniak CJ, Rigault P, Sharpe AG, Tibbits J, Tiwari V, Choulet F, Keeble-Gagnère G, Mascher M, Josselin A-A, Rogers J, Spannagl M, Choulet F, Lang D, Gundlach H, Haberer G, Keeble-Gagnère G, Mayer KFX, Ormanbekova D, Paux E, Prade V, Šimková H, Wicker T, Choulet F, Spannagl M, Swarbreck D, Rimbert H, Felder M, Guilhot N, Gundlach H, Haberer G, Kaithakottil G, Keilwagen J, Lang D, Leroy P, Lux T, Mayer KFX, Twardziok S, Venturini L, Appels R, Rimbert H, Choulet F, Juhász A, Keeble-Gagnère G, Choulet F, Spannagl M, Lang D, Abrouk M, Haberer G, Keeble-Gagnère G, Mayer KFX, Wicker T, Choulet F, Wicker T, Gundlach H, Lang D, Spannagl M, Lang D, Spannagl M, Appels R, Fischer I, Uauy C, Borrill P, Ramirez-Gonzalez RH, Appels R, Arnaud D, Chalabi S, Chalhoub B, Choulet F, Cory A, Datla R, Davey MW, Hayden M, Jacobs J, Lang D, Robinson SJ, Spannagl M, Steuernagel B, Tibbits J, Tiwari V, van Ex F, Wulff BBH, Pozniak CJ, Robinson SJ, Sharpe AG, Cory A, Benhamed M, Paux E, Bendahmane A, Concia L, Latrasse D, Rogers J, Jacobs J, Alaux M, Appels R, Bartoš J, Bellec A, Berges H, Doležel J, Feuillet C, Frenkel Z, Gill B, Korol A, Letellier T, Olsen O-A, Šimková H, Singh K, Valárik M, van der Vossen E, Vautrin S, Weining S, Korol A, Frenkel Z, Fahima T, Glikson V, Raats D, Rogers J, Tiwari V, Gill B, Paux E, Poland J, Doležel J, Číhalíková J, Šimková H, Toegelová H, Vrána J, Sourdille P, Darrier B, Appels R, Spannagl M, Lang D, Fischer I, Ormanbekova D, Prade V, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Steuernagel B, Jones JDG, Witek K, Wulff BBH, Yu G, Small I, Melonek J, Zhou R, Juhász A, Belova T, Appels R, Olsen O-A, Kanyuka K, King R, Nilsen K, Walkowiak S, Pozniak CJ, Cuthbert R, Datla R, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Doležel J, Čížková J, Tibbits J, Budak H, Akpinar BA, Biyiklioglu S, Muehlbauer G, Poland J, Gao L, Gutierrez-Gonzalez J, N’Daiye A, Doležel J, Šimková H, Číhalíková J, Kubaláková M, Šafář J, Vrána J, Berges H, Bellec A, Vautrin S, Alaux M, Alfama F, Adam-Blondon A-F, Flores R, Guerche C, Letellier T, Loaec M, Quesneville H, Pozniak CJ, Sharpe AG, Walkowiak S, Budak H, Condie J, Ens J, Koh C, Maclachlan R, Tan Y, Wicker T, Choulet F, Paux E, Alberti A, Aury J-M, Balfourier F, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Gill B, Kaur G, Luo M, Sehgal S, Singh K, Chhuneja P, Gupta OP, Jindal S, Kaur P, Malik P, Sharma P, Yadav B, Singh NK, Khurana J, Chaudhary C, Khurana P, Kumar V, Mahato A, Mathur S, Sevanthi A, Sharma N, Tomar RS, Rogers J, Jacobs J, Alaux M, Bellec A, Berges H, Doležel J, Feuillet C, Frenkel Z, Gill B, Korol A, van der Vossen E, Vautrin S, Gill B, Kaur G, Luo M, Sehgal S, Bartoš J, Holušová K, Plíhal O, Clark MD, Heavens D, Kettleborough G, Wright J, Valárik M, Abrouk M, Balcárková B, Holušová K, Hu Y, Luo M, Salina E, Ravin N, Skryabin K, Beletsky A, Kadnikov V, Mardanov A, Nesterov M, Rakitin A, Sergeeva E, Handa H, Kanamori H, Katagiri S, Kobayashi F, Nasuda S, Tanaka T, Wu J, Appels R, Hayden M, Keeble-Gagnère G, Rigault P, Tibbits J, Olsen O-A, Belova T, Cattonaro F, Jiumeng M, Kugler K, Mayer KFX, Pfeifer M, Sandve S, Xun X, Zhan B, Šimková H, Abrouk M, Batley J, Bayer PE, Edwards D, Hayashi S, Toegelová H, Tulpová Z, Visendi P, Weining S, Cui L, Du X, Feng K, Nie X, Tong W, Wang L, Borrill P, Gundlach H, Galvez S, Kaithakottil G, Lang D, Lux T, Mascher M, Ormanbekova D, Prade V, Ramirez-Gonzalez RH, Spannagl M, Stein N, Uauy C, Venturini L, Stein N, Appels R, Eversole K, Rogers J, Borrill P, Cattivelli L, Choulet F, Hernandez P, Kanyuka K, Lang D, Mascher M, Nilsen K, Paux E, Pozniak CJ, Ramirez-Gonzalez RH, Šimková H, Small I, Spannagl M, Swarbreck D, Uauy C (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. https://doi.org/10.1126/science.aar7191
Rakszegi M, Boros D, Kuti C, Láng L, Bedo Z, Shewry PR (2008) Composition and end-use quality of 150 wheat lines selected for the HEALTHGRAIN diversity screen. J Agric Food Chem 56(21):9750–9757. https://doi.org/10.1021/jf8009359
Safi H, Wangorsch A, Lidholm J, Brini F, Spiric J, Rihs HP, Vieths S, Armentia A, Farioli L, Diaz-Perales A, Pastorello EA, Scheurer S (2018) Identification and molecular characterization of allergenic non-specific lipid-transfer protein from durum wheat (Triticum turgidum). Clin Exp Allergy. https://doi.org/10.1111/cea.13271
Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron 25(2):170–176. https://doi.org/10.1016/j.eja.2006.04.010
Sanchez-Monge R, Garcia-Casado G, Malpica JM, Salcedo G (1996) Inhibitory activities against heterologous alpha-amylases and in vitro allergenic reactivity of Einkorn wheats. Theor Appl Genet 93(5–6):745–750. https://doi.org/10.1007/bf00224071
Larre C, Lupi R, Gombaud G, Brossard C, Branlard G, Moneret-Vautrin DA, Rogniaux H, Denery-Papini S (2011) Assessment of allergenicity of diploid and hexaploid wheat genotypes: identification of allergens in the albumin/globulin fraction. J Proteomics 74(8):1279–1289. https://doi.org/10.1016/j.jprot.2011.03.014
Bedetti C, Bozzini A, Silano V, Vittozzi L (1974) Amylase protein inhibitors and the role of Aegilops species in polyploid wheat speciation. Biochem Biophys Acta 362(2):299–307
Zoccatelli G, Sega M, Bolla M, Cecconi D, Vaccino P, Rizzi C, Chignola R, Brandolini A (2012) Expression of alpha-amylase inhibitors in diploid Triticum species. Food Chem 135(4):2643–2649. https://doi.org/10.1016/j.foodchem.2012.06.123
Geisslitz S, Ludwig C, Scherf KA, Koehler P (2018) Targeted LC–MS/MS reveals similar contents of α-amylase/trypsin-inhibitors as putative triggers of nonceliac gluten sensitivity in all wheat species except Einkorn. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.8b04411
Zevallos VF, Raker V, Tenzer S, Jimenez-Calvente C, Ashfaq-Khan M, Russel N, Pickert G, Schild H, Steinbrink K, Schuppan D (2017) Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152(5):1100–1113.e1112. https://doi.org/10.1053/j.gastro.2016.12.006
Bellinghausen I, Weigmann B, Zevallos V, Maxeiner J, Reissig S, Waisman A, Schuppan D, Saloga J (2018) Wheat amylase/trypsin inhibitors exacerbate intestinal and airway allergic immune responses in humanized mice. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2018.02.041
Cuccioloni M, Mozzicafreddo M, Ali I, Bonfili L, Cecarini V, Eleuteri AM, Angeletti M (2016) Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: kinetic, equilibrium and structural characterization of binding. Food Chem 213:571–578. https://doi.org/10.1016/j.foodchem.2016.07.020
Cuccioloni M, Mozzicafreddo M, Bonfili L, Cecarini V, Giangrossi M, Falconi M, Saitoh SI, Eleuteri AM, Angeletti M (2017) Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies. Sci Rep 7(1):13169. https://doi.org/10.1038/s41598-017-13709-1
Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209(13):2395–2408. https://doi.org/10.1084/jem.20102660
Sander I, Rozynek P, Rihs HP, van Kampen V, Chew FT, Lee WS, Kotschy-Lang N, Merget R, Bruning T, Raulf-Heimsoth M (2011) Multiple wheat flour allergens and cross-reactive carbohydrate determinants bind IgE in baker’s asthma. Allergy 66(9):1208–1215
Sievers S (2016) Component-resolved diagnostics of food-allergy. Dissertation, Free University, Berlin
Prandi B, Faccini A, Tedeschi T, Galaverna G, Sforza S (2013) LC/MS analysis of proteolytic peptides in wheat extracts for determining the content of the allergen amylase/trypsin inhibitor CM3: influence of growing area and variety. Food Chem 140(1):141–146. https://doi.org/10.1016/j.foodchem.2013.02.039
Baker JE, Woo SM, Throne JE, Finney PL (1991) Correlation of α-amylase inhibitor content in eastern soft wheats with development parameters of the rice weevil (Coleoptera: Curculionidae). Environ Entomol 20(1):53–60. https://doi.org/10.1093/ee/20.1.53
Altenbach SB, Tanaka CK, Pineau F, Lupi R, Drouet M, Beaudouin E, Morisset M, Denery-Papini S (2015) Assessment of the allergenic potential of transgenic wheat (Triticum aestivum) with reduced levels of omega5-gliadins, the major sensitizing allergen in wheat-dependent exercise-induced anaphylaxis. J Agric Food Chem 63(42):9323–9332. https://doi.org/10.1021/acs.jafc.5b03557
De Santis MA, Giuliani MM, Giuzio L, De Vita P, Lovegrove A, Shewry PR, Flagella Z (2017) Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur J Agron 87:19–29. https://doi.org/10.1016/j.eja.2017.04.003
Giuliani MM, Palermo C, De Santis MA, Mentana A, Pompa M, Giuzio L, Masci S, Centonze D, Flagella Z (2015) Differential expression of durum wheat gluten proteome under water stress during grain filling. J Agric Food Chem 63(29):6501–6512. https://doi.org/10.1021/acs.jafc.5b01635
Johansson E, Malik AH, Hussain A, Rasheed F, Newson WR, Plivelic T, Hedenqvist MS, Gällstedt M, Kuktaite R (2013) Wheat gluten polymer structures: the impact of genotype, environment, and processing on their functionality in various applications. Cereal Chem J 90(4):367–376. https://doi.org/10.1094/CCHEM-08-12-0105-FI
Mutwali NI, Mustafa AI, Gorafi YS, Mohamed Ahmed IA (2016) Effect of environment and genotypes on the physicochemical quality of the grains of newly developed wheat inbred lines. Food Sci Nutr 4(4):508–520. https://doi.org/10.1002/fsn3.313
Visioli G, Galieni A, Stagnari F, Bonas U, Speca S, Faccini A, Pisante M, Marmiroli N (2016) Proteomics of durum wheat grain during transition to conservation agriculture. PLoS One 11(6):e0156007. https://doi.org/10.1371/journal.pone.0156007
Spaenij-Dekking L, Kooy-Winkelaar Y, van Veelen P, Drijfhout JW, Jonker H, van Soest L, Smulders MJ, Bosch D, Gilissen LJ, Koning F (2005) Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129(3):797–806. https://doi.org/10.1053/j.gastro.2005.06.017
van den Broeck HC, de Jong HC, Salentijn EM, Dekking L, Bosch D, Hamer RJ, Gilissen LJ, van der Meer IM, Smulders MJ (2010) Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor Appl Genet 121(8):1527–1539. https://doi.org/10.1007/s00122-010-1408-4
Fardet A (2015) Wheat-based foods and non celiac gluten/wheat sensitivity: is drastic processing the main key issue? Med Hypotheses 85(6):934–939. https://doi.org/10.1016/j.mehy.2015.09.007
Verhoeckx KC, Vissers YM, Baumert JL, Faludi R, Feys M, Flanagan S, Herouet-Guicheney C, Holzhauser T, Shimojo R, van der Bolt N, Wichers H, Kimber I (2015) Food processing and allergenicity. Food Chem Toxicol 80:223–240. https://doi.org/10.1016/j.fct.2015.03.005
Heredia-Sandoval NG, Islas-Rubio AR, Cabrera-Chavez F, Calderon de la Barca AM (2014) Transamidation of gluten proteins during the bread-making process of wheat flour to produce breads with less immunoreactive gluten. Food Funct 5(8):1813–1818. https://doi.org/10.1039/c4fo00118d
Ribeiro M, Nunes FM, Guedes S, Domingues P, Silva AM, Carrillo JM, Rodriguez-Quijano M, Branlard G, Igrejas G (2015) Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties. Sci Rep 5:18041. https://doi.org/10.1038/srep18041
Buddrick O, Cornell HJ, Small DM (2015) Reduction of toxic gliadin content of wholegrain bread by the enzyme caricain. Food Chem 170:343–347. https://doi.org/10.1016/j.foodchem.2014.08.030
de Gregorio M, Armentia A, Diaz-Perales A, Palacin A, Duenas-Laita A, Martin B, Salcedo G, Sanchez-Monge R (2009) Salt-soluble proteins from wheat-derived foodstuffs show lower allergenic potency than those from raw flour. J Agric Food Chem 57(8):3325–3330. https://doi.org/10.1021/jf803475v
Jones SM, Magnolfi CF, Cooke SK, Sampson HA (1995) Immunologic cross-reactivity among cereal grains and grasses in children with food hypersensitivity. J Allergy Clin Immunol 96(3):341–351
Sander I, Raulf-Heimsoth M, Duser M, Flagge A, Czuppon AB, Baur X (1997) Differentiation between cosensitization and cross-reactivity in wheat flour and grass pollen-sensitized subjects. Int Arch Allergy Immunol 112(4):378–385. https://doi.org/10.1159/000237483
Nilsson N, Nilsson C, Ekoff H, Wieser-Pahr S, Borres MP, Valenta R, Hedlin G, Sjolander S (2018) Grass-allergic children frequently show asymptomatic low-level IgE co-sensitization and cross-reactivity to wheat. Int Arch Allergy Immunol. https://doi.org/10.1159/000489610
Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, Mayer KF, Olsen OA (2014) Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345(6194):1250091. https://doi.org/10.1126/science.1250091
Longin CFH, Würschum T (2016) Back to the future—tapping into ancient grains for food diversity. Trends Plant Sci 21(9):731–737. https://doi.org/10.1016/j.tplants.2016.05.005
Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Sec 12:31–37. https://doi.org/10.1016/j.gfs.2017.01.008
Henry RJ, Rangan P, Furtado A (2016) Functional cereals for production in new and variable climates. Curr Opin Plant Biol 30:11–18. https://doi.org/10.1016/j.pbi.2015.12.008
Lopes MS, Rebetzke GJ, Reynolds M (2014) Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J Exp Bot 65(21):6167–6177. https://doi.org/10.1093/jxb/eru384
Bromilow S, Gethings LA, Buckley M, Bromley M, Shewry PR, Langridge JI, Clare Mills EN (2017) A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J Proteomics 163:67–75. https://doi.org/10.1016/j.jprot.2017.03.026
Mishra A, Arora N (2017) Allergenicity assessment of transgenic wheat lines in silico. Methods Mol Biol 1679:97–111. https://doi.org/10.1007/978-1-4939-7337-8_6
Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Sys Evolut 53(2):117–137. https://doi.org/10.1111/jse.12150
Acknowledgements
We would like to thank the University of Hohenheim (Germany), the Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben (Germany) and the Institut für Getreideforschung (Nuthetal, Germany) for the provision of the grains which were kindly assigned by Rosemarie Schneeweiß from ILU Institut für Lebensmittel- und Umweltforschung e.V. (Nuthetal, Germany).
Funding
This study was financially supported by GoodMills Innovation GmbH, Hamburg.
Author information
Authors and Affiliations
Contributions
Steven Sievers and Kirsten Beyer were involved in the concept and design of the study. Steven Sievers and Alexander Rohrbach were involved in the acquisition of the laboratory. Steven Sievers and Kirsten Beyer performed interpretation of the data. Steven Sievers wrote the first draft of the manuscript. All authors participated in the revision of the manuscript and gave their final approval.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sievers, S., Rohrbach, A. & Beyer, K. Wheat-induced food allergy in childhood: ancient grains seem no way out. Eur J Nutr 59, 2693–2707 (2020). https://doi.org/10.1007/s00394-019-02116-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-019-02116-z