Skip to main content

Advertisement

Log in

Association between grains, gluten and the risk of colorectal cancer in the Cancer Prevention Study-II Nutrition Cohort

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Evidence supports a role of whole grains in colorectal cancer (CRC) prevention, but the association between gluten intake and CRC risk in healthy populations is unclear. We examined the association of grain and gluten intake with risk of CRC overall and by subsite among Cancer Prevention Study-II Nutrition Cohort participants.

Methods

In 1999, 50,118 men and 62,031 women completed food frequency questionnaires assessing grain intake. Gluten intake was estimated using the protein content of grain products. Multivariable-adjusted hazards ratio (HR) and 95% confidence interval (CI) of CRC risk were estimated using Cox proportional hazards regression.

Results

During follow-up through 2013, 1742 verified CRC cases occurred. For the highest vs. lowest quintiles of whole grain intake, HRs (95% CIs) of CRC risk were 0.77 (0.61–0.97; P trend = 0.03) among men and 1.10 (95% CI 0.88–1.36; P trend = 0.14) among women (P interaction by sex = 0.01). Men in the highest vs. lowest quintile of whole grain intake had a 43% lower risk of rectal cancer (HR = 0.57, 95% CI 0.35–0.93, P trend = 0.04). Gluten intake was not associated with CRC risk overall (HR = 1.10, 95% CI 0.93–1.32, P trend = 0.10), but was associated with risk of proximal colon cancer among men and women, combined (HR = 1.37, 95% CI 1.07–1.75, quintile 5 vs. 1, P trend = 0.001) and separately. Refined grains and grain-based sweets were not associated with CRC risk.

Conclusions

We found that higher whole grain intake was associated with lower CRC risk among older US men, but not women. The positive association of gluten intake with the risk of proximal colon cancer deserves further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Cancer Research Fund International/American Institute for Cancer Research. Diet, nutrition, physical activity and colorectal cancer. Continuous Update Project Expert Report 2018. https://www.aicr.org/continuous-update-project/reports/colorectal-cancer-2017-report.pdf. Accessed 20 Dec 2018

  2. Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, Jemal A (2017) Colorectal Cancer Incidence Patterns in the United States, 1974-2013. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw322

    Article  PubMed  PubMed Central  Google Scholar 

  3. World Cancer Research Fund International/American Institute for Cancer Research. Diet, nutrition, physical activity and cancer: a global perspective. Continuous Update Project Expert Report 2018. https://www.wcrf.org/sites/default/files/Full-Report-PDF-bundle.zip. Accessed 20 Dec 2018

  4. US Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. December 2015. http://health.gov/dietaryguidelines/2015/guidelines/. Accessed 20 Dec 2018

  5. Slavin J (2003) Why whole grains are protective: biological mechanisms. Proc Nutr Soc 62:129–134. https://doi.org/10.1079/PNS2002221

    Article  CAS  PubMed  Google Scholar 

  6. Martinez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA, Haub MD, Walter J (2013) Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 7:269–280. https://doi.org/10.1038/ismej.2012.104

    Article  CAS  PubMed  Google Scholar 

  7. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15:73. https://doi.org/10.1186/s12967-017-1175-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leonard MM, Sapone A, Catassi C, Fasano A (2017) Celiac disease and nonceliac gluten sensitivity: a review. JAMA 318:647–656. https://doi.org/10.1001/jama.2017.9730

    Article  PubMed  Google Scholar 

  9. Kim HS, Patel KG, Orosz E, Kothari N, Demyen MF, Pyrsopoulos N, Ahlawat SK (2016) Time trends in the prevalence of celiac disease and gluten-free diet in the US Population: results From the National Health and Nutrition Examination Surveys 2009-2014. JAMA Intern Med 176:1716–1717. https://doi.org/10.1001/jamainternmed.2016.5254

    Article  PubMed  Google Scholar 

  10. Green PH, Jabri B (2003) Coeliac disease. Lancet 362:383–391. https://doi.org/10.1016/S0140-6736(03)14027-5

    Article  CAS  PubMed  Google Scholar 

  11. Freeman HJ (2009) Adult celiac disease and its malignant complications. Gut Liver 3:237–246. https://doi.org/10.5009/gnl.2009.3.4.237

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garfinkel L (1985) Selection, follow-up, and analysis in the American Cancer Society prospective studies. Natl Cancer Inst Monogr 67:49–52

    CAS  PubMed  Google Scholar 

  13. Calle EE, Rodriguez C, Jacobs EJ, Almon ML, Chao A, McCullough ML, Feigelson HS, Thun MJ (2002) The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer 94:2490–2501. https://doi.org/10.1002/cncr.101970

    Article  PubMed  Google Scholar 

  14. Flagg EW, Coates RJ, Calle EE, Potischman N, Thun MJ (2000) Validation of the American Cancer Society Cancer Prevention Study II Nutrition Survey Cohort Food Frequency Questionnaire. Epidemiology 11:462–468

    Article  CAS  Google Scholar 

  15. Lebwohl B, Cao Y, Zong G, Hu FB, Green PHR, Neugut AI, Rimm EB, Sampson L, Dougherty LW, Giovannucci E, Willett WC, Sun Q, Chan AT (2017) Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: prospective cohort study. BMJ 357:j1892. https://doi.org/10.1136/bmj.j1892

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  Google Scholar 

  17. van Overbeek FM, Uil-Dieterman IG, Mol IW, Kohler-Brands L, Heymans HS, Mulder CJ (1997) The daily gluten intake in relatives of patients with coeliac disease compared with that of the general Dutch population. Eur J Gastroenterol Hepatol 9:1097–1099

    Article  Google Scholar 

  18. Jamnik J, Garcia-Bailo B, Borchers CH, El-Sohemy A (2015) Gluten intake is positively associated with plasma alpha2-macroglobulin in young adults. J Nutr 145:1256–1262. https://doi.org/10.3945/jn.115.212829

    Article  CAS  PubMed  Google Scholar 

  19. Harvard TH Chan School of Public Health Nutrition Department. Food composition tables. https://regepi.bwh.harvard.edu/health/nutrition/index.html. Accessed 9 Apr 2019

  20. Kasarda DD (2013) Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J Agric Food Chem 61:1155–1159. https://doi.org/10.1021/jf305122s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan C, Spiegelman D, Rimm EB, Rosner BA, Stampfer MJ, Barnett JB, Chavarro JE, Subar AF, Sampson LK, Willett WC (2017) Validity of a dietary questionnaire assessed by comparison with multiple weighed dietary records or 24-hour recalls. Am J Epidemiol 185:570–584. https://doi.org/10.1093/aje/kww104

    Article  PubMed  PubMed Central  Google Scholar 

  22. Calle EE, Terrell DD (1993) Utility of the National Death Index for ascertainment of mortality among cancer prevention study II participants. Am J Epidemiol 137:235–241

    Article  CAS  Google Scholar 

  23. Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariable methods. PWS Publishing Co, Boston, MA, USA

  24. Vieira AR, Abar L, Chan DSM, Vingeliene S, Polemiti E, Stevens C, Greenwood D, Norat T (2017) Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann Oncol 28:1788–1802. https://doi.org/10.1093/annonc/mdx171

    Article  CAS  PubMed  Google Scholar 

  25. Kyro C, Skeie G, Loft S, Landberg R, Christensen J, Lund E, Nilsson LM, Palmqvist R, Tjonneland A, Olsen A (2013) Intake of whole grains from different cereal and food sources and incidence of colorectal cancer in the Scandinavian HELGA cohort. Cancer Causes Control 24:1363–1374. https://doi.org/10.1007/s10552-013-0215-z

    Article  PubMed  Google Scholar 

  26. Schatzkin A, Mouw T, Park Y, Subar AF, Kipnis V, Hollenbeck A, Leitzmann MF, Thompson FE (2007) Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study. Am J Clin Nutr 85:1353–1360

    Article  CAS  Google Scholar 

  27. McCarl M, Harnack L, Limburg PJ, Anderson KE, Folsom AR (2006) Incidence of colorectal cancer in relation to glycemic index and load in a cohort of women. Cancer Epidemiol Biomark Prev 15:892–896. https://doi.org/10.1158/1055-9965.EPI-05-0700

    Article  CAS  Google Scholar 

  28. Larsson SC, Giovannucci E, Bergkvist L, Wolk A (2005) Whole grain consumption and risk of colorectal cancer: a population-based cohort of 60,000 women. Br J Cancer 92:1803–1807. https://doi.org/10.1038/sj.bjc.6602543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCullough ML, Robertson AS, Chao A, Jacobs EJ, Stampfer MJ, Jacobs DR, Diver WR, Calle EE, Thun MJ (2003) A prospective study of whole grains, fruits, vegetables and colon cancer risk. Cancer Causes Control 14:959–970

    Article  Google Scholar 

  30. Schatzkin A, Lanza E, Corle D, Lance P, Iber F, Caan B, Shike M, Weissfeld J, Burt R, Cooper MR, Kikendall JW, Cahill J (2000) Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N Engl J Med 342:1149–1155. https://doi.org/10.1056/NEJM200004203421601

    Article  CAS  PubMed  Google Scholar 

  31. McKeown-Eyssen GE, Bright-See E, Bruce WR, Jazmaji V, Cohen LB, Pappas SC, Saibil FG (1994) A randomized trial of a low fat high fibre diet in the recurrence of colorectal polyps. Toronto Polyp Prevention Group. J Clin Epidemiol 47:525–536

    Article  CAS  Google Scholar 

  32. MacLennan R, Macrae F, Bain C, Battistutta D, Chapuis P, Gratten H, Lambert J, Newland RC, Ngu M, Russell A, Ward M, Wahlqvist ML, Australian Polyp Prevention P (1995) Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas. J Natl Cancer Inst 87:1760–1766

    Article  CAS  Google Scholar 

  33. Alberts DS, Martinez ME, Roe DJ, Guillen-Rodriguez JM, Marshall JR, van Leeuwen JB, Reid ME, Ritenbaugh C, Vargas PA, Bhattacharyya AB, Earnest DL, Sampliner RE (2000) Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians’ Network. N Engl J Med 342:1156–1162. https://doi.org/10.1056/NEJM200004203421602

    Article  CAS  PubMed  Google Scholar 

  34. Bonithon-Kopp C, Kronborg O, Giacosa A, Rath U, Faivre J (2000) Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. European Cancer Prevention Organisation Study Group. Lancet 356:1300–1306

    Article  CAS  Google Scholar 

  35. Slavin JL (2000) Mechanisms for the impact of whole grain foods on cancer risk. J Am Coll Nutr 19:300S–307S

    Article  CAS  Google Scholar 

  36. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528. https://doi.org/10.3748/wjg.v17.i12.1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vanegas SM, Meydani M, Barnett JB, Goldin B, Kane A, Rasmussen H, Brown C, Vangay P, Knights D, Jonnalagadda S, Koecher K, Karl JP, Thomas M, Dolnikowski G, Li L, Saltzman E, Wu D, Meydani SN (2017) Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 105:635–650. https://doi.org/10.3945/ajcn.116.146928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karl JP, Meydani M, Barnett JB, Vanegas SM, Goldin B, Kane A, Rasmussen H, Saltzman E, Vangay P, Knights D, Chen CO, Das SK, Jonnalagadda SS, Meydani SN, Roberts SB (2017) Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr 105:589–599. https://doi.org/10.3945/ajcn.116.139683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McIntyre A, Vincent RM, Perkins AC, Spiller RC (1997) Effect of bran, ispaghula, and inert plastic particles on gastric emptying and small bowel transit in humans: the role of physical factors. Gut 40:223–227

    Article  CAS  Google Scholar 

  40. Wrick KL, Robertson JB, Van Soest PJ, Lewis BA, Rivers JM, Roe DA, Hackler LR (1983) The influence of dietary fiber source on human intestinal transit and stool output. J Nutr 113:1464–1479. https://doi.org/10.1093/jn/113.8.1464

    Article  CAS  PubMed  Google Scholar 

  41. Moore MA, Park CB, Tsuda H (1998) Soluble and insoluble fiber influences on cancer development. Crit Rev Oncol Hematol 27:229–242

    Article  CAS  Google Scholar 

  42. Buyken AE, Goletzke J, Joslowski G, Felbick A, Cheng G, Herder C, Brand-Miller JC (2014) Association between carbohydrate quality and inflammatory markers: systematic review of observational and interventional studies. Am J Clin Nutr 99:813–833. https://doi.org/10.3945/ajcn.113.074252

    Article  CAS  PubMed  Google Scholar 

  43. Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrugger S, Maerkedahl RB, Bahl MI, Lind MV, Nielsen RL, Frokiaer H, Gobel RJ, Landberg R, Ross AB, Brix S, Holck J, Meyer AS, Sparholt MH, Christensen AF, Carvalho V, Holst JJ, Rumessen JJ, Linneberg A, Sicheritz-Ponten T, Dalgaard MD, Blennow A, Frandsen HL, Villas-Boas S, Kristiansen K, Vestergaard H, Hansen T, Ekstrom CT, Ritz C, Nielsen HB, Pedersen OB, Gupta R, Lauritzen L, Licht TR (2017) Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut. https://doi.org/10.1136/gutjnl-2017-314786

    Article  PubMed  PubMed Central  Google Scholar 

  44. Andersson A, Tengblad S, Karlstrom B, Kamal-Eldin A, Landberg R, Basu S, Aman P, Vessby B (2007) Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J Nutr 137:1401–1407

    Article  CAS  Google Scholar 

  45. Gaskins AJ, Mumford SL, Rovner AJ, Zhang C, Chen L, Wactawski-Wende J, Perkins NJ, Schisterman EF, BioCycle Study G (2010) Whole grains are associated with serum concentrations of high sensitivity C-reactive protein among premenopausal women. J Nutr 140:1669–1676. https://doi.org/10.3945/jn.110.124164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ (2010) Whole and refined grain intakes are related to inflammatory protein concentrations in human plasma. J Nutr 140:587–594. https://doi.org/10.3945/jn.109.116640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biesiekierski JR, Peters SL, Newnham ED, Rosella O, Muir JG, Gibson PR (2013) No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 145:320.e321-323–328.e321-323. https://doi.org/10.1053/j.gastro.2013.04.051

    Article  CAS  Google Scholar 

  48. Biesiekierski JR, Iven J (2015) Non-coeliac gluten sensitivity: piecing the puzzle together. United European Gastroenterol J 3:160–165. https://doi.org/10.1177/2050640615578388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferretti G, Bacchetti T, Masciangelo S, Saturni L (2012) Celiac disease, inflammation and oxidative damage: a nutrigenetic approach. Nutrients 4:243–257. https://doi.org/10.3390/nu4040243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Caminero A, Nistal E, Herran AR, Perez-Andres J, Ferrero MA, Vaquero Ayala L, Vivas S, Ruiz de Morales JM, Albillos SM, Casqueiro FJ (2015) Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. Br J Nutr 114:1157–1167. https://doi.org/10.1017/S0007114515002767

    Article  CAS  PubMed  Google Scholar 

  51. Choung RS, Ditah IC, Nadeau AM, Rubio-Tapia A, Marietta EV, Brantner TL, Camilleri MJ, Rajkumar SV, Landgren O, Everhart JE, Murray JA (2015) Trends and racial/ethnic disparities in gluten-sensitive problems in the United States: findings from the National Health and Nutrition Examination Surveys from 1988 to 2012. Am J Gastroenterol 110:455–461. https://doi.org/10.1038/ajg.2015.8

    Article  PubMed  Google Scholar 

  52. Assor E, Davies-Shaw J, Marcon MA, Mahmud FH (2014) Estimation of dietary gluten content using total protein in relation to gold standard testing in a variety of foods. J Nutr Food Sci 04:296. https://doi.org/10.4172/2155-9600.1000296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express sincere appreciation to all Cancer Prevention Study-II Nutrition Cohort participants and to each member of the study and biospecimen management group. The authors would like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention’s National Program of Cancer Registries and cancer registries supported by the National Cancer Institute’s Surveillance Epidemiology and End Results Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Y. Um.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Sources of support

The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study-II Nutrition Cohort.

Additional information

The views expressed here are those of the authors and do not necessarily represent the American Cancer Society or the American Cancer Society–Cancer Action Network.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Um, C.Y., Campbell, P.T., Carter, B. et al. Association between grains, gluten and the risk of colorectal cancer in the Cancer Prevention Study-II Nutrition Cohort. Eur J Nutr 59, 1739–1749 (2020). https://doi.org/10.1007/s00394-019-02032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02032-2

Keywords

Navigation