Skip to main content

Meat consumption in midlife and risk of cognitive impairment in old age: the Singapore Chinese Health Study



Epidemiological studies directly investigating the association between different types of meat intake and cognitive impairment are limited. We, therefore, examined this association in the Singapore Chinese Health Study.


In total, 16,948 participants were included in analysis. Diet was measured by a 165-item semiquantitative food-frequency questionnaire at baseline (1993–1998) when participants were 45–74 years. Cognitive impairment was defined using a Singapore modified version of Mini-Mental State Examination during follow-up three visits (2014–2016) when participants were 61–96 years. Multivariable logistic regression models were used to estimate odds ratio (OR) and 95% confidence interval (CI).


Cognitive impairment was present in 2443 (14.4%) participants. Compared to the lowest quartile, the highest quartile of red meat intake was associated with increased risk of cognitive impairment (OR 1.16, 95% CI 1.01–1.32, P for trend = 0.009), while the corresponding value for poultry intake was 0.89 (95% CI 0.78–1.02, P for trend = 0.10). Higher fresh fish/shellfish was associated with a lower risk of cognitive impairment (OR 0.88, 95% CI 0.77–1.00, P for trend = 0.03), while preserved fish/shellfish intake was associated with a higher risk (OR 1.19, 95% CI 1.04–1.36, P for trend = 0.01).


This study found that a higher intake of red meat in midlife was associated with increased likelihood of cognitive impairment in later life, while substitution of red meat intake with poultry or fresh fish/shellfish was associated with reduced risk.

This is a preview of subscription content, access via your institution.


  1. 1.

    Hilal S, Ikram MK, Saini M, Tan CS, Catindig JA, Dong YH, Lim LB, Ting EY, Koo EH, Cheung CY, Qiu A, Wong TY, Chen CL, Venketasubramanian N (2013) Prevalence of cognitive impairment in Chinese: epidemiology of dementia in Singapore study. J Neurol Psychiatry 84(6):686–692.

    Article  Google Scholar 

  2. 2.

    van de Rest O, Berendsen AA, Haveman-Nies A, de Groot LC (2015) Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr 6(2):154–168.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gardener SL, Rainey-Smith SR, Barnes MB, Sohrabi HR, Weinborn M, Lim YY, Harrington K, Taddei K, Gu Y, Rembach A, Szoeke C, Ellis KA, Masters CL, Macaulay SL, Rowe CC, Ames D, Keogh JB, Scarmeas N, Martins RN (2015) Dietary patterns and cognitive decline in an Australian study of ageing. Mol Psychiatry 20(7):860–866.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Shakersain B, Santoni G, Larsson SC, Faxen-Irving G, Fastbom J, Fratiglioni L, Xu W (2016) Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement 12(2):100–109.

    Article  PubMed  Google Scholar 

  5. 5.

    Albanese E, Dangour AD, Uauy R, Acosta D, Guerra M, Guerra SS, Huang Y, Jacob KS, de Rodriguez JL, Noriega LH, Salas A, Sosa AL, Sousa RM, Williams J, Ferri CP, Prince MJ (2009) Dietary fish and meat intake and dementia in Latin America, China, and India: a 10/66 Dementia Research Group population-based study. Am J Clin Nutr 90(2):392–400.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chen X, Huang Y, Cheng HG (2012) Lower intake of vegetables and legumes associated with cognitive decline among illiterate elderly Chinese: a 3-year cohort study. J Nutr Health Aging 16(6):549–552.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    An R, Liu G, Khan N, Yan H, Wang Y (2017) Dietary habits and cognitive impairment risk among oldest-old Chinese. J Gerontol B Psychol Sci Soc Sci.

    Article  Google Scholar 

  8. 8.

    Barberger-Gateau P, Letenneur L, Deschamps V, Peres K, Dartigues JF, Renaud S (2002) Fish, meat, and risk of dementia: cohort study. BMJ 325(7370):932–933.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Barberger-Gateau P, Raffaitin C, Letenneur L, Berr C, Tzourio C, Dartigues JF, Alperovitch A (2007) Dietary patterns and risk of dementia: the three-city cohort study. Neurology 69(20):1921–1930.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Koh F, Charlton K, Walton K, McMahon AT (2015) Role of dietary protein and thiamine intakes on cognitive function in healthy older people: a systematic review. Nutrients 7(4):2415–2439.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dong L, Xiao R, Cai C, Xu Z, Wang S, Pan L, Yuan L (2016) Diet, lifestyle and cognitive function in old Chinese adults. Arch Gerontol Geriatr 63:36–42.

    Article  PubMed  Google Scholar 

  12. 12.

    Rahman A, Sawyer Baker P, Allman RM, Zamrini E (2007) Dietary factors and cognitive impairment in community-dwelling elderly. J Nutr Health Aging 11(1):49–54

    CAS  PubMed  Google Scholar 

  13. 13.

    Wang Z, Dong B, Zeng G, Li J, Wang W, Wang B, Yuan Q (2010) Is there an association between mild cognitive impairment and dietary pattern in chinese elderly? Results from a cross-sectional population study. BMC Public Health.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Vercambre MN, Boutron-Ruault MC, Ritchie K, Clavel-Chapelon F, Berr C (2009) Long-term association of food and nutrient intakes with cognitive and functional decline: a 13-year follow-up study of elderly French women. Br J Nutr 102(3):419–427.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Yuan L, Liu J, Ma W, Dong L, Wang W, Che R, Xiao R (2016) Dietary pattern and antioxidants in plasma and erythrocyte in patients with mild cognitive impairment from China. Nutrition 32(2):193–198.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    van Gelder BM, Tijhuis M, Kalmijn S, Kromhout D (2007) Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study. Am J Clin Nutr 85(4):1142–1147.

    Article  PubMed  Google Scholar 

  17. 17.

    Kesse-Guyot E, Peneau S, Ferry M, Jeandel C, Hercberg S, Galan P, Group SVMR (2011) Thirteen-year prospective study between fish consumption, long-chain n-3 fatty acids intakes and cognitive function. J Nutr Health Aging 15(2):115–120.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    van de Rest O, Wang Y, Barnes LL, Tangney C, Bennett DA, Morris MC (2016) APOE epsilon4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology 86(22):2063–2070.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Samieri C, Morris MC, Bennett DA, Berr C, Amouyel P, Dartigues JF, Tzourio C, Chasman DI, Grodstein F (2018) Fish intake, genetic predisposition to Alzheimer disease, and decline in global cognition and memory in 5 cohorts of older persons. Am J Epidemiol 187(5):933–940.

    Article  PubMed  Google Scholar 

  20. 20.

    Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J (2016) Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose–response meta-analysis of 21 cohort studies. Am J Clin Nutr 103(2):330–340.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Qin B, Plassman BL, Edwards LJ, Popkin BM, Adair LS, Mendez MA (2014) Fish intake is associated with slower cognitive decline in Chinese older adults. J Nutr 144(10):1579–1585.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC (2001) Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutr Cancer 39(2):187–195.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Talaei M, Wang YL, Yuan JM, Pan A, Koh WP (2017) Meat, dietary heme iron, and risk of type 2 diabetes mellitus: the Singapore Chinese Health Study. Am J Epidemiol 186(7):824–833.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Odegaard AO, Koh WP, Butler LM, Duval S, Gross MD, Yu MC, Yuan JM, Pereira MA (2011) Dietary patterns and incident type 2 diabetes in Chinese men and women: the Singapore Chinese health study. Diabetes Care 34(4):880–885.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Odegaard AO, Koh WP, Yuan JM, Gross MD, Pereira MA (2014) Dietary patterns and mortality in a Chinese population. Am J Clin Nutr 100(3):877–883.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Feng L, Chong MS, Lim WS, Ng TP (2012) The Modified Mini-Mental State Examination test: normative data for Singapore Chinese older adults and its performance in detecting early cognitive impairment. Singap Med J 53(7):458–462

    Google Scholar 

  27. 27.

    Nilsson FM (2007) Mini Mental State Examination (MMSE)—probably one of the most cited papers in health science. Acta Psychiatr Scand 116(2):156–157.

    Article  PubMed  Google Scholar 

  28. 28.

    Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    CAS  Article  Google Scholar 

  29. 29.

    Li H, Jia J, Yang Z (2016) Mini-Mental State Examination in elderly Chinese: a population-based normative study. J Alzheimers Dis 53(2):487–496.

    Article  PubMed  Google Scholar 

  30. 30.

    Katzman R, Zhang MY, Ouang Ya Q, Wang ZY, Liu WT, Yu E, Wong SC, Salmon DP, Grant I (1988) A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol 41(10):971–978.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Willett WC (2013) Nutritional epidemiology, 3rd edn. Oxford University Press, New York

    Google Scholar 

  32. 32.

    Kulldorff M, Sinha R, Chow WH, Rothman N (2000) Comparing odds ratios for nested subsets of dietary components. Int J Epidemiol 29(6):1060–1064.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Pan A, Franco OH, Ye J, Demark-Wahnefried W, Ye X, Yu Z, Li H, Lin X (2008) Soy protein intake has sex-specific effects on the risk of metabolic syndrome in middle-aged and elderly Chinese. J Nutr 138(12):2413–2421.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tangalos EG, Smith GE, Ivnik RJ, Petersen RC, Kokmen E, Kurland LT, Offord KP, Parisi JE (1996) The Mini-Mental State Examination in general medical practice: clinical utility and acceptance. Mayo Clin Proc 71(9):829–837.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Munshi M, Grande L, Hayes M, Ayres D, Suhl E, Capelson R, Lin S, Milberg W, Weinger K (2006) Cognitive dysfunction is associated with poor diabetes control in older adults. Diabetes Care 29(8):1794–1799.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lin JS, O’Connor E, Rossom RC, Perdue LA, Eckstrom E (2013) Screening for cognitive impairment in older adults: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 159(9):601–612.

    Article  PubMed  Google Scholar 

  37. 37.

    Barnard ND, Bunner AE, Agarwal U (2014) Saturated and trans fats and dementia: a systematic review. Neurobiol Aging 35(Suppl 2):S65–73.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Jansen D, Janssen CI, Vanmierlo T, Dederen PJ, van Rooij D, Zinnhardt B, Nobelen CL, Janssen AL, Hafkemeijer A, Mutsaers MP, Doedee AM, Kuipers AA, Broersen LM, Mulder M, Kiliaan AJ (2012) Cholesterol and synaptic compensatory mechanisms in Alzheimer's disease mice brain during aging. J Alzheimers Dis 31(4):813–826.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Anstey KJ, Lipnicki DM, Low LF (2008) Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry 16(5):343–354.

    Article  PubMed  Google Scholar 

  40. 40.

    Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146(6):1564–1572.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Li S, Shao Y, Li K, HuangFu C, Wang W, Liu Z, Cai Z, Zhao B (2018) Vascular cognitive impairment and the gut microbiota. J Alzheimers Dis 63(4):1209–1222.

    Article  PubMed  Google Scholar 

  42. 42.

    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Gladwin MT, Raat NJ, Shiva S, Dezfulian C, Hogg N, Kim-Shapiro DB, Patel RP (2006) Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol 291(5):H2026–2035.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Rinwa P, Kumar A (2014) Modulation of nitrergic signalling pathway by American ginseng attenuates chronic unpredictable stress-induced cognitive impairment, neuroinflammation, and biochemical alterations. Naunyn Schmiedebergs Arch Pharmacol 387(2):129–141.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Holub DJ, Holub BJ (2004) Omega-3 fatty acids from fish oils and cardiovascular disease. Mol Cell Biochem 263(1–2):217–225

    CAS  Article  Google Scholar 

  46. 46.

    Hutcheon JA, Chiolero A, Hanley JA (2010) Random measurement error and regression dilution bias. BMJ 340:c2289.

    Article  PubMed  Google Scholar 

Download references


We thank Siew-Hong Low of the National University of Singapore for supervising the fieldwork of the Singapore Chinese Health Study and Renwei Wang for the maintenance of the cohort study database. Finally, we acknowledge the founding Principal Investigator of the Singapore Chinese Health Study, Mimi C. Yu.


The study was supported by Grants from the National Medical Research Council, Singapore (NMRC/CSA/0055/2013) and the National Institutes of Health (Grants R01 CA144034 and UM1 CA182876). An Pan is supported by the National Key Research and Development Program of China (2017YFC0907504) and Hubei Province Science Fund for Distinguished Young Scholars (2018CFA033).

Author information



Corresponding authors

Correspondence to An Pan or Woon-Puay Koh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Review Board of the National University of Singapore.

Informed consent

Informed consent forms were obtained from all participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, YW., Sheng, LT., Pan, XF. et al. Meat consumption in midlife and risk of cognitive impairment in old age: the Singapore Chinese Health Study. Eur J Nutr 59, 1729–1738 (2020).

Download citation


  • Red meat
  • Poultry
  • Fish/shellfish
  • Cognitive impairment
  • Cohort study