Skip to main content

Advertisement

Log in

Plasma marine n-3 polyunsaturated fatty acids and cardiovascular risk factors: data from the ACE 1950 study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

A high intake of marine n-3 polyunsaturated fatty acids (PUFAs) might improve cardiovascular (CV) health. We conducted a cross-sectional study to investigate associations between plasma phospholipid levels of marine n-3 PUFAs and CV risk factors, educational level, physical activity and smoking habits.

Methods

A total of 3706 individuals from a general population, all born in 1950 and residing in Akershus County, Norway, were included in this study. The main statistical approach was multivariable adjusted linear regression.

Results

Plasma marine n-3 PUFA levels ranged from 2.7 to 20.3 wt%, with a median level of 7.7 wt% (interquartile range 4.3–11.1 wt%). High levels of plasma marine n-3 PUFAs were associated with lower serum triglycerides [Standardized regression coefficient (Std.β-coeff.) − 0.14, p < 0.001], body mass index (Std. β-coeff. −0.08, p < 0.001), serum creatinine (Std. β-coeff. -0.03, p = 0.05), C-reactive protein levels (Std. β-coeff. – 0.03, p = 0.04), higher levels of serum high-density lipoprotein cholesterol (Std. β-coeff. 0.08, p < 0.001) and low-density lipoprotein cholesterol (Std. β-coeff. 0.04, p = 0.003). High levels of plasma marine n-3 PUFAs were also associated with lower glycated hemoglobin (Std. β-coeff. – 0.04, p = 0.01), however, only in individuals without diabetes. We found no associations between plasma marine n-3 PUFA levels and fasting plasma glucose or carotid intima-media thickness. High levels of plasma marine n-3 PUFAs were associated with higher educational level, more physical activity and lower prevalence of smoking.

Conclusion

In this cross-sectional study of Norwegian individuals born in 1950, high levels of plasma marine n-3 PUFAs were favourably associated with several CV risk factors, suggesting that fish consumption might improve CV health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

Akershus cardiac examination

ACEi:

Angiotensin converting enzyme inhibitor

ARB:

Angiotensin receptor blocker

BMI:

Body mass index

cIMT:

Carotid intima-media thickness

CKD:

Chronic kidney disease

CI:

Confidence interval

CRP:

C-reactive protein

CV:

Cardiovascular

CVD:

Cardiovascular disease

DHA:

Docosahexaenoic acid

eGFR:

Estimated glomerular filtration rate

EPA:

Eicosapentaenoic acid

FFQ:

Food frequency questionnaires

HbA1c:

Glycated hemoglobin

HDL:

High-density lipoprotein

IQR:

Interquartile range

LDL:

Low-density lipoprotein

PUFA:

Polyunsaturated fatty acid

Std. β-coeff.:

Standardized regression coefficient

Unstd. β-coeff.:

Unstandardized regression coefficient

wt%:

Weight percentage

References

  1. Mozaffarian D, Wu JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58(20):2047–2067. https://doi.org/10.1016/j.jacc.2011.06.063

    Article  CAS  PubMed  Google Scholar 

  2. He K, Song Y, Daviglus ML, Liu K, Van Horn L, Dyer AR, Greenland P (2004) Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation 109(22):2705–2711. https://doi.org/10.1161/01.CIR.0000132503.19410.6B

    Article  PubMed  Google Scholar 

  3. Zhang Y, Zhuang P, He W, Chen JN, Wang WQ, Freedman ND, Abnet CC, Wang JB, Jiao JJ (2018) Association of fish and long-chain omega-3 fatty acids intakes with total and cause-specific mortality: prospective analysis of 421 309 individuals. J Intern Med 284(4):399–417. https://doi.org/10.1111/joim.12786

    Article  CAS  PubMed  Google Scholar 

  4. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, Yakoob MY, Chiuve SE, Dela Cruz L, Frazier-Wood AC, Fretts AM, Guallar E, Matsumoto C, Prem K, Tanaka T, Wu JH, Zhou X, Helmer C, Ingelsson E, Yuan JM, Barberger-Gateau P, Campos H, Chaves PH, Djousse L, Giles GG, Gomez-Aracena J, Hodge AM, Hu FB, Jansson JH, Johansson I, Khaw KT, Koh WP, Lemaitre RN, Lind L, Luben RN, Rimm EB, Riserus U, Samieri C, Franks PW, Siscovick DS, Stampfer M, Steffen LM, Steffen BT, Tsai MY, van Dam RM, Voutilainen S, Willett WC, Woodward M, Mozaffarian D, Cohorts for H, Aging Research in Genomic Epidemiology Fatty A, Outcomes Research C (2016) omega-3 Polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies. JAMA Intern Med 176(8):1155–1166. https://doi.org/10.1001/jamainternmed.2016.2925

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aung T, Halsey J, Kromhout D, Gerstein HC, Marchioli R, Tavazzi L, Geleijnse JM, Rauch B, Ness A, Galan P, Chew EY, Bosch J, Collins R, Lewington S, Armitage J, Clarke R, Omega-3 Treatment Trialists C (2018) Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77,917 individuals. JAMA Cardiol 3(3):225–234. https://doi.org/10.1001/jamacardio.2017.5205

    Article  PubMed  Google Scholar 

  6. Bowman L, Mafham M, Stevens W, Haynes R, Aung T, Chen F, Buck G, Collins R, Armitage J, Group ASC (2018) ASCEND: a study of cardiovascular events iN diabetes: characteristics of a randomized trial of aspirin and of omega-3 fatty acid supplementation in 15,480 people with diabetes. Am Heart J 198:135–144. https://doi.org/10.1016/j.ahj.2017.12.006

    Article  Google Scholar 

  7. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, Gibson H, Albert CM, Gordon D, Copeland T, D'Agostino D, Friedenberg G, Ridge C, Bubes V, Giovannucci EL, Willett WC, Buring JE, Group VR (2019) Marine n-3 Fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med 380(1):23–32. https://doi.org/10.1056/NEJMoa1811403

    Article  Google Scholar 

  8. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT Jr, Juliano RA, Jiao L, Granowitz C, Tardif JC, Ballantyne CM, Investigators R-I (2019) Cardiovascular Risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 380(1):11–22. https://doi.org/10.1056/NEJMoa1812792

    Article  CAS  PubMed  Google Scholar 

  9. Kromhout D, Yasuda S, Geleijnse JM, Shimokawa H (2012) Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work? Eur Heart J 33(4):436–443. https://doi.org/10.1093/eurheartj/ehr362

    Article  CAS  PubMed  Google Scholar 

  10. Amilien V, Bjørkum E, Bugge A, Dulsrud A, Døving R, Fagerli R, Jacobsen E, Kjærnes U, Lavik R, Stø E, Torjusen H & Vittersø G (2000): Om matkultur. National Institute for Consumer Research (SIFO). 19–2000 (report) (In Norwegian).

  11. Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB (2008) Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 118(3):230–237. https://doi.org/10.1161/CIRCULATIONAHA.108.771881

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296(15):1885–1899. https://doi.org/10.1001/jama.296.15.1885

    Article  CAS  PubMed  Google Scholar 

  13. Wennberg M, Tornevi A, Johansson I, Hornell A, Norberg M, Bergdahl IA (2012) Diet and lifestyle factors associated with fish consumption in men and women: a study of whether gender differences can result in gender-specific confounding. Nutr J 11:101. https://doi.org/10.1186/1475-2891-11-101

    Article  PubMed  PubMed Central  Google Scholar 

  14. Virtanen JK, Mursu J, Voutilainen S, Uusitupa M, Tuomainen TP (2014) Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor study. Diabetes Care 37(1):189–196. https://doi.org/10.2337/dc13-1504

    Article  CAS  PubMed  Google Scholar 

  15. Lai HT, de Oliveira Otto MC, Lemaitre RN, McKnight B, Song X, King IB, Chaves PH, Odden MC, Newman AB, Siscovick DS, Mozaffarian D (2018) Serial circulating omega 3 polyunsaturated fatty acids and healthy ageing among older adults in the Cardiovascular Health Study: prospective cohort study. BMJ 363:k4067. https://doi.org/10.1136/bmj.k4067

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mozaffarian D, Wu JH (2012) (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr 142(3):S614–S625. https://doi.org/10.3945/jn.111.149633

    Article  CAS  Google Scholar 

  17. Berge T, Vigen T, Pervez MO, Ihle-Hansen H, Lyngbakken MN, Omland T, Smith P, Steine K, Rosjo H, Tveit A, Group ACES (2015) Heart and Brain interactions—the Akershus Cardiac examination (ACE) 1950 study design. Scand Cardiovasc J 49(6):308–315. https://doi.org/10.3109/14017431.2015.1086813

    Article  Google Scholar 

  18. Berge T, Lyngbakken MN, Ihle-Hansen H, Brynildsen J, Pervez MO, Aagaard EN, Vigen T, Kvisvik B, Christophersen IE, Steine K, Omland T, Smith P, Rosjo H, Tveit A (2018) Prevalence of atrial fibrillation and cardiovascular risk factors in a 63–65 years old general population cohort: the Akershus Cardiac examination (ACE) 1950 study. BMJ Open 8(7):e021704. https://doi.org/10.1136/bmjopen-2018-021704

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ihle-Hansen H, Vigen T, Ihle-Hansen H, Ronning OM, Berge T, Thommessen B, Lyngbakken MN, Orstad EB, Enger S, Nygard S, Rosjo H, Tveit A (2018) Prevalence of carotid plaque in a 63- to 65-year-old Norwegian Cohort from the general population: the ACE (Akershus Cardiac examination) 1950 study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.008562

    Article  PubMed  PubMed Central  Google Scholar 

  20. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (2001) Executive Summary of the third report of The National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult treatment panel III). JAMA 285(19):2486–2497

    Article  Google Scholar 

  21. World Health Organization (WHO) (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation, in World Health Organ Tech Rep Ser. 2000. World Health Organization, Geneva, Switzerland, pp i-xii, 1–253

  22. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    PubMed  PubMed Central  Google Scholar 

  23. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  24. Burdge GC, Wright P, Jones AE, Wootton SA (2000) A method for separation of phosphatidylcholine, triacylglycerol, non-esterified fatty acids and cholesterol esters from plasma by solid-phase extraction. Br J Nutr 84(5):781–787

    Article  CAS  PubMed  Google Scholar 

  25. De Caterina R (2011) n-3 fatty acids in cardiovascular disease. N Engl J Med 364(25):2439–2450. https://doi.org/10.1056/NEJMra1008153

    Article  PubMed  Google Scholar 

  26. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, Beilin LJ (2000) Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr 71(5):1085–1094. https://doi.org/10.1093/ajcn/71.5.1085

    Article  CAS  PubMed  Google Scholar 

  27. Shearer GC, Savinova OV (1821) Harris WS (2012) Fish oil—how does it reduce plasma triglycerides? Biochim Biophys Acta 5:843–851. https://doi.org/10.1016/j.bbalip.2011.10.011

    Article  CAS  Google Scholar 

  28. Skulas-Ray AC, Kris-Etherton PM, Harris WS, Vanden Heuvel JP, Wagner PR, West SG (2011) Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr 93(2):243–252. https://doi.org/10.3945/ajcn.110.003871

    Article  CAS  PubMed  Google Scholar 

  29. Bonaa KH, Bjerve KS, Nordoy A (1992) Habitual fish consumption, plasma phospholipid fatty acids, and serum lipids: the Tromso study. Am J Clin Nutr 55(6):1126–1134. https://doi.org/10.1093/ajcn/55.6.1126

    Article  CAS  PubMed  Google Scholar 

  30. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KH, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L (2018) Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 11:CD003177. https://doi.org/10.1002/14651858.CD003177.pub4

    Article  PubMed  Google Scholar 

  31. Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, Becker W (2014) Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res 58:1. https://doi.org/10.3402/fnr.v58.25145

    Article  CAS  Google Scholar 

  32. Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, Djousse L, Hu FB, Mozaffarian D (2012) Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr 107(Suppl 2):S214–227. https://doi.org/10.1017/S0007114512001602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Joris PJ, Plat J, Kusters YH, Houben AJ, Stehouwer CD, Schalkwijk CG, Mensink RP (2017) Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: a randomized controlled trial in abdominally obese men. Am J Clin Nutr 105(1):23–31. https://doi.org/10.3945/ajcn.116.143552

    Article  CAS  PubMed  Google Scholar 

  34. Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851(4):469–484. https://doi.org/10.1016/j.bbalip.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  35. Gopinath B, Harris DC, Flood VM, Burlutsky G, Mitchell P (2011) Consumption of long-chain n-3 PUFA, alpha-linolenic acid and fish is associated with the prevalence of chronic kidney disease. Br J Nutr 105(9):1361–1368. https://doi.org/10.1017/S0007114510005040

    Article  CAS  PubMed  Google Scholar 

  36. Lauretani F, Semba RD, Bandinelli S, Miller ER 3rd, Ruggiero C, Cherubini A, Guralnik JM, Ferrucci L (2008) Plasma polyunsaturated fatty acids and the decline of renal function. Clin Chem 54(3):475–481. https://doi.org/10.1373/clinchem.2007.095521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu J, Liu Z, Zhang H (2017) Omega-3 fatty acid supplementation as an adjunctive therapy in the treatment of chronic kidney disease: a meta-analysis. Clinics (Sao Paulo) 72(1):58–64. https://doi.org/10.6061/clinics/2017(01)10

    Article  Google Scholar 

  38. Hoogeveen EK, Geleijnse JM, Kromhout D, Stijnen T, Gemen EF, Kusters R, Giltay EJ (2014) Effect of omega-3 fatty acids on kidney function after myocardial infarction: the Alpha omega trial. Clin J Am Soc Nephrol 9(10):1676–1683. https://doi.org/10.2215/CJN.10441013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baggio B, Musacchio E, Priante G (2005) Polyunsaturated fatty acids and renal fibrosis: pathophysiologic link and potential clinical implications. J Nephrol 18(4):362–367

    CAS  PubMed  Google Scholar 

  40. Lasota AN, Gronholdt MM, Bork CS, Lundbye-Christensen S, Overvad K, Schmidt EB (2018) Marine n-3 Fatty acids and the risk of peripheral arterial disease. J Am Coll Cardiol 72(14):1576–1584. https://doi.org/10.1016/j.jacc.2018.07.045

    Article  CAS  PubMed  Google Scholar 

  41. Umemoto N, Ishii H, Kamoi D, Aoyama T, Sakakibara T, Takahashi H, Tanaka A, Yasuda Y, Suzuki S, Matsubara T, Murohara T (2016) Reverse association of omega-3/omega-6 polyunsaturated fatty acids ratios with carotid atherosclerosis in patients on hemodialysis. Atherosclerosis 249:65–69. https://doi.org/10.1016/j.atherosclerosis.2016.03.037

    Article  CAS  PubMed  Google Scholar 

  42. Monge A, Harris WS, Ortiz-Panozo E, Yunes E, Cantu-Brito C, Catzin-Kuhlmann A, Lopez-Ridaura R, Lajous M (2016) Whole blood omega-3 Fatty acids are inversely associated with carotid intima-media thickness in indigenous mexican women. J Nutr 146(7):1365–1372. https://doi.org/10.3945/jn.115.227264

    Article  PubMed  Google Scholar 

  43. Dai XW, Zhang B, Wang P, Chen CG, Chen YM, Su YX (2014) Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women. Atherosclerosis 232(1):79–85. https://doi.org/10.1016/j.atherosclerosis.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  44. United Nations Food and Agriculture Organization, Globefish, The State of World Fisheries and Aquaculture Report 2014

  45. Ren L, Cai J, Liang J, Li W, Sun Z (2015) Impact of Cardiovascular risk factors on carotid intima-media thickness and degree of severity: a cross-sectional study. PLoS ONE 10(12):e0144182. https://doi.org/10.1371/journal.pone.0144182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Touboul PJ, Labreuche J, Bruckert E, Schargrodsky H, Prati P, Tosetto A, Hernandez-Hernandez R, Woo KS, Silva H, Vicaut E, Amarenco P (2014) HDL-C, triglycerides and carotid IMT: a meta-analysis of 21,000 patients with automated edge detection IMT measurement. Atherosclerosis 232(1):65–71. https://doi.org/10.1016/j.atherosclerosis.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  47. Engeset D, Braaten T, Teucher B, Kuhn T, Bueno-de-Mesquita HB, Leenders M, Agudo A, Bergmann MM, Valanou E, Naska A, Trichopoulou A, Key TJ, Crowe FL, Overvad K, Sonestedt E, Mattiello A, Peeters PH, Wennberg M, Jansson JH, Boutron-Ruault MC, Dossus L, Dartois L, Li K, Barricarte A, Ward H, Riboli E, Agnoli C, Huerta JM, Sanchez MJ, Tumino R, Altzibar JM, Vineis P, Masala G, Ferrari P, Muller DC, Johansson M, Luisa Redondo M, Tjonneland A, Olsen A, Olsen KS, Brustad M, Skeie G, Lund E (2015) Fish consumption and mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Eur J Epidemiol 30(1):57–70. https://doi.org/10.1007/s10654-014-9966-4

    Article  CAS  PubMed  Google Scholar 

  48. Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47(5):348–380. https://doi.org/10.1016/j.plipres.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  49. Huang X, Sjogren P, Cederholm T, Arnlov J, Lindholm B, Riserus U, Carrero JJ (2014) Serum and adipose tissue fatty acid composition as biomarkers of habitual dietary fat intake in elderly men with chronic kidney disease. Nephrol Dial Transplant 29(1):128–136. https://doi.org/10.1093/ndt/gfs478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the skilled study staff at the Clinical Trial Unit, Division of Medicine, Akershus University Hospital, and the Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust. We also thank the staff at The Lipid Research Laboratory, Aalborg University Hospital, Denmark, who performed the fatty acid analyses. Finally, we would like to thank the study participants.

Funding

The ACE (Akershus Cardiac Examination) 1950 Study is funded by two health trusts (Akershus University Hospital HF and Vestre Viken HF), and the South-Eastern Norway Regional Health Authority, the University of Oslo, and the Norwegian Health Association. A.C was supported by public funding grants from Akershus University Hospital.

Author information

Authors and Affiliations

Authors

Contributions

AC, IAE and MS designed the present study. HR, MNL, TB, TO and AT designed and organized the ACE 1950 Study including baseline examinations and data collection. TV, HI-H, EBO and OMR performed carotid ultrasound and baseline examinations. EBS was responsible for the fatty acid analyses. AC, IAE and MNL analysed the data. AC, IAE, EBS, TO and MS edited the manuscript, HR, TV, HI-H, EBO, OMR, MNL, TB and AT co-edited the manuscript. All the authors approved the final version of the manuscript. AC submitted the manuscript.

Corresponding author

Correspondence to Anupam Chandra.

Ethics declarations

Conflict of interest

The authors declare no disclosures or conflict of interest. The results presented in this paper have not been published previously and is not under consideration for publication anywhere else.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, A., Røsjø, H., Eide, I.A. et al. Plasma marine n-3 polyunsaturated fatty acids and cardiovascular risk factors: data from the ACE 1950 study. Eur J Nutr 59, 1505–1515 (2020). https://doi.org/10.1007/s00394-019-02007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02007-3

Keywords

Navigation