Skip to main content

Advertisement

Log in

Water-soluble dietary fibers enhance bioavailability of quercetin and a fiber derived from soybean is most effective after long-term feeding in rats

European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of water-soluble dietary fibers (pectin, soybean fiber, and guar gum) on the bioavailability of quercetin glucoside mixture (Q3GM) comprising quercetin-3-O-glucoside (Q3G, 31.8%) and its glucose adducts.

Methods

Male Wistar/ST rats were fed test diet containing 0.7% Q3GM with or without 5% of each dietary fiber for 8 weeks. Total quercetin derivatives were evaluated with liquid chromatograph tandem mass spectrometry (LC–MS/MS) as total quercetin derivatives after enzymatic deconjugation in plasma, urine, and fecal samples on week 2, 4, 6 and 8. Quercetin glucuronides excreted in feces were also measured.

Results

Fiber feeding elevated cecal weight and reduced cecal pH, indicative of cecal fermentation promotion. Changes in plasma and urinary quercetin levels revealed three phases of quercetin metabolism, including cumulative, transient, and stable phases. On week 2, total quercetin derivatives were higher in plasma samples from three fiber-fed groups than those control groups; however, urinary excretion increased in fiber-fed groups on week 4. Soybean fiber upregulated plasma and urinary quercetin levels on week 6 and 8. Intestinal degradation of quercetin by bacteria, calculated from differences between aglycone ingestion and sum of urinary and fecal excretion, was suppressed after dietary fiber supplementation especially in pectin fiber, which may partly contribute to the increase in quercetin bioavailability. Fecal quercetin glucuronide excretion was high in soybean fiber-fed rats, suggestive of the reduction of β-glucuronidase in colon.

Conclusion

Water-soluble dietary fibers, especially soybean fiber, enhanced quercetin bioavailability after chronic feeding and may promote beneficial effects of quercetin on disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Gee JM, Hara H, Johnson IT (2002) Suppression of intestinal crypt cell proliferation and aberrant crypt foci by dietary quercetin in rats. Nutr Cancer 43:193–201. https://doi.org/10.1207/s15327914nc432_10

    Article  CAS  PubMed  Google Scholar 

  2. Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 135:357–364. https://doi.org/10.1016/s1532-0456(03)00140-6

    Article  Google Scholar 

  3. Chen S, Jiang H, Wu X, Fang J (2016) Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. https://doi.org/10.1155/2016/9340637

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Yao J, Han C et al (2016) Quercetin, inflammation and immunity. Nutrients 8:167. https://doi.org/10.3390/nu8030167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo Y, Bruno RS (2015) Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem 26:201–210. https://doi.org/10.1016/j.jnutbio.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  6. Day AJ, Gee JM, Dupont M et al (2003) Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol 65:1199–1206. https://doi.org/10.1016/S0006-2952(03)00039-X

    Article  CAS  PubMed  Google Scholar 

  7. Wolffram S, Blöck M, Ader P (2002) Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J Nutr 132:630–635. https://doi.org/10.1093/jn/132.4.630

    Article  CAS  PubMed  Google Scholar 

  8. Chabane MN, Ahmad AA, Peluso J et al (2009) Quercetin and naringenin transport across human intestinal Caco-2 cells. J Pharm Pharmacol 61:1473–1483. https://doi.org/10.1211/jpp/61.11.0006

    Article  CAS  Google Scholar 

  9. Vries JH, Hollman PC, Meyboom S et al (1998) Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. Am J Clin Nutr 68:60–65. https://doi.org/10.1093/ajcn/68.1.60

    Article  PubMed  Google Scholar 

  10. Manach C, Morand C, Demigné C et al (1997) Bioavailability of rutin and quercetin in rats. FEBS Lett 409:12–16. https://doi.org/10.1016/s0014-5793(97)00467-5

    Article  CAS  PubMed  Google Scholar 

  11. Keppler K, Hein E, Humpf H (2006) Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation. Mol Nutr Food Res 50:686–695. https://doi.org/10.1002/mnfr.200600016

    Article  CAS  PubMed  Google Scholar 

  12. Marín L, Miguélez EM, Villar CJ et al (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. https://doi.org/10.1155/2015/905215

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thilakarathna S, Rupasinghe H (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387. https://doi.org/10.3390/nu5093367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rich G, Buchweitz M, Winterbone M et al (2017) Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients 9:111. https://doi.org/10.3390/nu9020111

    Article  CAS  PubMed Central  Google Scholar 

  15. Shiau S, Chang GW (1983) Effects of dietary fiber on fecal mucinase and β-glucuronidase activity in rats. J Nutr 113:138–144. https://doi.org/10.1093/jn/113.1.138

    Article  CAS  PubMed  Google Scholar 

  16. Maruti SS, Chang J, Prunty JA et al (2008) Serum β-glucuronidase activity in response to fruit and vegetable supplementation: a controlled feeding study. Cancer Epidemiol Biomarkers Prev 17:1808–1812. https://doi.org/10.1158/1055-9965.EPI-07-2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andoh A, Tsujikawa T, Fujiyama Y (2003) Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des 9:347–358. https://doi.org/10.2174/1381612033391973

    Article  CAS  PubMed  Google Scholar 

  18. Koh A, Vadder FD, Kovatcheva-Datchary P et al (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  19. Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2:1266–1289. https://doi.org/10.3390/nu2121266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Threapleton DE, Greenwood DC, Evans CE et al (2013) Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 15:347. https://doi.org/10.1136/bmj.f6879

    Article  Google Scholar 

  21. Matsukawa N, Matsumoto M, Shinoki A et al (2009) Nondigestible saccharides suppress the bacterial degradation of quercetin aglycone in the large intestine and enhance the bioavailability of quercetin glucoside in rats. J Agric Food Chem 57:9462–9468. https://doi.org/10.1021/jf9024079

    Article  CAS  PubMed  Google Scholar 

  22. Shinoki A, Lang W, Thawornkuno C et al (2013) A novel mechanism for the promotion of quercetin glycoside absorption by megalo α-1,6-glucosaccharide in the rat small intestine. Food Chem 136:293–296. https://doi.org/10.1016/j.foodchem.2012.08.028

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka S, Shinoki A, Hara H (2016) Melibiose, a nondigestible disaccharide, promotes absorption of quercetin glycosides in rat small intestine. J Agric Food Chem 64:9335–9341. https://doi.org/10.1021/acs.jafc.6b03714

    Article  CAS  PubMed  Google Scholar 

  24. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951. https://doi.org/10.1093/jn/123.11.1939

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka S, Oyama M, Nishikawa M et al (2018) Simultaneous collection of the portal and superior vena cava blood in conscious rats defined that intestinal epithelium is the major site of glucuronidation, but not sulfation and methylation, of quercetin. Biosci Biotechnol Biochem 82:2118–2129. https://doi.org/10.1080/09168451.2018.1515615

    Article  CAS  PubMed  Google Scholar 

  26. Mullen W, Rouanet JM et al (2008) The bioavailability of [2-14C] quercetin-4′-glucoside in rats. J Agric Food Chem 56:12127–12137. https://doi.org/10.1021/jf802754s

    Article  CAS  PubMed  Google Scholar 

  27. Aura A, Oleary KA, Williamson G et al (2002) Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem 50:1725–1730. https://doi.org/10.1021/jf0108056

    Article  CAS  PubMed  Google Scholar 

  28. Marín L, Miguélez EM, Villar CJ et al (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. https://doi.org/10.1155/2015/905215

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raneva V, Shimasaki H, Ishida Y et al (2001) Antioxidative activity of 3,4-dihydroxyphenylacetic acid and caffeic acid in rat plasma. Lipids 36:1111–1116. https://doi.org/10.1007/s11745-001-0821-6

    Article  CAS  PubMed  Google Scholar 

  30. El-Ansary A, Shaker G, Siddiqi NJ, Al-Ayadhi LY (2013) Possible ameliorative effects of antioxidants on propionic acid/clindamycin—induced neurotoxicity in syrian hamsters. Gut Pathogens 5:15. https://doi.org/10.1186/1757-4749-5-32

    Article  CAS  Google Scholar 

  31. Suzuki T, Hara H (2009) Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells. J Nutr 139:965–974. https://doi.org/10.3945/jn.108.100867

    Article  CAS  PubMed  Google Scholar 

  32. Skrbek S, Rüfer CE, Marko D et al (2009) Quercetin and its microbial degradation product 3,4-dihydroxyphenylacetic acid generate hydrogen peroxide modulating their stability under in vitro conditions. J Food Nutr 48:129–140

    CAS  Google Scholar 

  33. Kern M, Fridrich D, Reichert J et al (2007) Limited stability in cell culture medium and hydrogen peroxide formation affect the growth inhibitory properties of delphinidin and its degradation product gallic acid. Mol Nutr Food Res 51:1163–1172. https://doi.org/10.1002/mnfr.200700004

    Article  CAS  PubMed  Google Scholar 

  34. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. https://doi.org/10.1126/science.1208344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moco S, Martin FJ, Rezzi S (2012) Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res 11:4781–4790. https://doi.org/10.1021/pr300581s

    Article  CAS  PubMed  Google Scholar 

  36. Hervert-Hernández D, Goñi I (2011) Dietary polyphenols and human gut microbiota: a review. Food Rev Int 27:154–169. https://doi.org/10.1080/87559129.2010.535233

    Article  CAS  Google Scholar 

  37. Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA (2011) The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 15:76. https://doi.org/10.1111/j.1750-3841.2010.01957.x

    Article  CAS  Google Scholar 

  38. Flint HJ, Scott KP, Duncan SH et al (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306. https://doi.org/10.4161/gmic.19897

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cermak R, Breves G, Lüpke M et al (2006) In vitro degradation of the flavonol quercetin and of quercetin glycosides in the porcine hindgut. Arch Anim Nutr 60:180–189. https://doi.org/10.1080/17450390500467695

    Article  CAS  PubMed  Google Scholar 

  40. Rowland IR, Mallett AK, Wise A (1983) A comparison of the activity of five microbial enzymes in cecal content from rats, mice, and hamsters, and response to dietary pectin. Toxicol Appl Pharmacol 69:143–148. https://doi.org/10.1016/0041-008X(83)90130-8

    Article  CAS  PubMed  Google Scholar 

  41. Kim D, Jin Y (2001) Intestinal bacterial β-glucuronidase activity of patients with colon cancer. Arch Pharm Res 24:564–567. https://doi.org/10.1007/BF02975166

    Article  CAS  PubMed  Google Scholar 

  42. Hara H, Onoshima S, Nakagawa C (2010) Difructose anhydride III promotes iron absorption in the rat large intestine. Nutrition 26:120–127. https://doi.org/10.1016/j.nut.2009.05.024

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi T, Maeda H, Aoyama T et al (1999) Physiological effects of water-soluble soybean fiber in rats. Biosci Biotechnol Biochem 63:1340–1345. https://doi.org/10.1271/bbb.63.1340

    Article  CAS  PubMed  Google Scholar 

  44. Rideout T (2008) Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag 4:1023–1033. https://doi.org/10.2147/VHRM.S3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trakooncharoenvit, A., Tanaka, S., Mizuta, E. et al. Water-soluble dietary fibers enhance bioavailability of quercetin and a fiber derived from soybean is most effective after long-term feeding in rats. Eur J Nutr 59, 1389–1398 (2020). https://doi.org/10.1007/s00394-019-01992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-01992-9

Keywords

Navigation