Skip to main content
Log in

Metabolomic approach in milk from calorie-restricted rats during lactation: a potential link to the programming of a healthy phenotype in offspring

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Mild/moderate maternal calorie restriction during lactation in rats has been associated with a lower predisposition to obesity and a healthier metabolic profile in adult offspring. Here, we aimed to assess the impact of maternal calorie restriction during lactation on milk composition to identify potential candidate components that could be involved in the programming effects in offspring.

Methods

An untargeted metabolomic approach in milk samples from 20%-calorie-restricted lactating (CRL) dams and their controls was performed. Levels of leptin, adiponectin, and irisin hormones in milk were also determined at lactating days 5, 10, and 15.

Results

Metabolomic analyses revealed a different metabolite pattern in milk between controls and CRL dams. 29 differential metabolites were tentatively identified (p < 0.05, FC > 1.5). Among them, myo-inositol, which showed greater levels in milk from CRL rats than controls, may be highlighted as one of the biologically plausible candidates that could be related to the beneficial effects of CRL in offspring. Results regarding myo-inositol were validated spectrophotometrically at days 10 and 15 of lactation, and levels in milk were correlated with maternal plasma levels. In addition, milk from CRL dams presented increased levels of adiponectin, decreased levels of irisin, and no changes in leptin levels vs controls throughout lactation.

Conclusion

These data reveal important changes in milk composition due to calorie restriction during lactation that may be involved in the metabolic programming of the healthier phenotype of adult offspring. However, the possible contribution of the specific components is yet to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achard V, Boullu-Ciocca S, Desbriere R, Grino M (2006) Perinatal programming of central obesity and the metabolic syndrome: role of glucocorticoids. Metab Syndr Relat Disord 4(2):129–137

    Article  CAS  Google Scholar 

  2. Cripps RL, Martin-Gronert MS, Ozanne SE (2005) Fetal and perinatal programming of appetite. Clin Sci (Lond) 109(1):1–11

    Article  CAS  Google Scholar 

  3. Ip S, Chung M, Raman G, Trikalinos TA, Lau J (2009) A summary of the Agency for Healthcare Research and Quality’s evidence report on breastfeeding in developed countries. Breastfeed Med 4(Suppl 1):S17–S30. https://doi.org/10.1089/bfm.2009.0050

    Article  PubMed  Google Scholar 

  4. Weyermann M, Rothenbacher D, Brenner H (2006) Duration of breastfeeding and risk of overweight in childhood: a prospective birth cohort study from Germany. Int J Obes 30(8):1281–1287. https://doi.org/10.1038/sj.ijo.0803260

    Article  CAS  Google Scholar 

  5. von Kries R, Koletzko B, Sauerwald T, von Mutius E, Barnert D, Grunert V, von Voss H (1999) Breast feeding and obesity: cross sectional study. BMJ 319(7203):147–150

    Article  Google Scholar 

  6. Gillman MW, Rifas-Shiman SL, Camargo CA Jr, Berkey CS, Frazier AL, Rockett HR, Field AE, Colditz GA (2001) Risk of overweight among adolescents who were breastfed as infants. JAMA 285(19):2461–2467

    Article  CAS  Google Scholar 

  7. Armstrong J, Reilly JJ (2002) Breastfeeding and lowering the risk of childhood obesity. Lancet 359(9322):2003–2004

    Article  Google Scholar 

  8. Harder T, Bergmann R, Kallischnigg G, Plagemann A (2005) Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 162(5):397–403

    Article  Google Scholar 

  9. Locke R (2002) Preventing obesity: the breast milk-leptin connection. Acta Paediatr 91(9):891–894

    Article  CAS  Google Scholar 

  10. Lonnerdal B (2000) Breast milk: a truly functional food. Nutrition 16(7–8):509–511

    Article  CAS  Google Scholar 

  11. Pico C, Jilkova ZM, Kus V, Palou A, Kopecky J (2011) Perinatal programming of body weight control by leptin: putative roles of AMP kinase and muscle thermogenesis. Am J Clin Nutr 94(6 Suppl):1830S–1837S

    Article  CAS  Google Scholar 

  12. Palou M, Picó C, Palou A (2018) Leptin as a breastmilk component for the prevention of obesity. Nutr Rev 76(12):879–892

    Google Scholar 

  13. Bravi F, Wiens F, Decarli A, Dal Pont A, Agostoni C, Ferraroni M (2016) Impact of maternal nutrition on breast-milk composition: a systematic review. Am J Clin Nutr 104(3):646–662. https://doi.org/10.3945/ajcn.115.120881

    Article  CAS  PubMed  Google Scholar 

  14. Palou M, Priego T, Sanchez J, Torrens JM, Palou A, Pico C (2010) Moderate caloric restriction in lactating rats protects offspring against obesity and insulin resistance in later life. Endocrinology 151(3):1030–1041

    Article  CAS  Google Scholar 

  15. Palou M, Torrens JM, Priego T, Sanchez J, Palou A, Pico C (2011) Moderate caloric restriction in lactating rats programs their offspring for a better response to HF diet feeding in a sex-dependent manner. J Nutr Biochem 22(6):574–584

    Article  CAS  Google Scholar 

  16. Torrens JM, Konieczna J, Palou M, Sanchez J, Pico C, Palou A (2014) Early biomarkers identified in a rat model of a healthier phenotype based on early postnatal dietary intervention may predict the response to an obesogenic environment in adulthood. J Nutr Biochem 25(2):208–218. https://doi.org/10.1016/j.jnutbio.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  17. Savino F, Benetti S, Liguori SA, Sorrenti M, Cordero Di Montezemolo L (2013) Advances on human milk hormones and protection against obesity. Cell Mol Biol (Noisy-le-grand) 59(1):89–98

    CAS  Google Scholar 

  18. Palou A, Pico C (2009) Leptin intake during lactation prevents obesity and affects food intake and food preferences in later life. Appetite 52(1):249–252

    Article  CAS  Google Scholar 

  19. Pico C, Palou M, Priego T, Sanchez J, Palou A (2012) Metabolic programming of obesity by energy restriction during the perinatal period: different outcomes depending on gender and period, type and severity of restriction. Front Physiol 3:436. https://doi.org/10.3389/fphys.2012.00436

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chan D, Goruk S, Becker AB, Subbarao P, Mandhane PJ, Turvey SE, Lefebvre D, Sears MR, Field CJ, Azad MB (2018) Adiponectin, leptin and insulin in breast milk: associations with maternal characteristics and infant body composition in the first year of life. Int J Obes 42(1):36–43. https://doi.org/10.1038/ijo.2017.189

    Article  CAS  Google Scholar 

  21. Aydin S, Kuloglu T, Aydin S (2013) Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides 47:66–70. https://doi.org/10.1016/j.peptides.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  22. Newburg DS, Woo JG, Morrow AL (2010) Characteristics and potential functions of human milk adiponectin. J Pediatr 156(2 Suppl):S41–S46. https://doi.org/10.1016/j.jpeds.2009.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin Agnoux A, Antignac JP, Boquien CY, David A, Desnots E, Ferchaud-Roucher V, Darmaun D, Parnet P, Alexandre-Gouabau MC (2015) Perinatal protein restriction affects milk free amino acid and fatty acid profile in lactating rats: potential role on pup growth and metabolic status. J Nutr Biochem 26(7):784–795. https://doi.org/10.1016/j.jnutbio.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  24. Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, Wang J (2016) Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep 6:24208. https://doi.org/10.1038/srep24208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dangat K, Upadhyay D, Kilari A, Sharma U, Kemse N, Mehendale S, Lalwani S, Wagh G, Joshi S, Jagannathan NR (2016) Altered breast milk components in preeclampsia; an in vitro proton NMR spectroscopy study. Clin Chim Acta 463:75–83. https://doi.org/10.1016/j.cca.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  26. Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B (2015) Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr 61(1):8–17. https://doi.org/10.1097/MPG.0000000000000818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong WW, Hachey DL, Insull W, Opekun AR, Klein PD (1993) Effect of dietary cholesterol on cholesterol synthesis in breast-fed and formula-fed infants. J Lipid Res 34(8):1403–1411

    CAS  PubMed  Google Scholar 

  28. Owen CG, Whincup PH, Kaye SJ, Martin RM, Davey Smith G, Cook DG, Bergstrom E, Black S, Wadsworth ME, Fall CH, Freudenheim JL, Nie J, Huxley RR, Kolacek S, Leeson CP, Pearce MS, Raitakari OT, Lisinen I, Viikari JS, Ravelli AC, Rudnicka AR, Strachan DP, Williams SM (2008) Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am J Clin Nutr 88(2):305–314. https://doi.org/10.1093/ajcn/88.2.305

    Article  CAS  PubMed  Google Scholar 

  29. Brunton PJ (2015) Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J Neuroendocrinol 27(6):468–480. https://doi.org/10.1111/jne.12265

    Article  CAS  PubMed  Google Scholar 

  30. Downes CP (1989) G protein-dependent regulation of phospholipase C. Trends Pharmacol Sci Suppl:39–42

  31. Low MG (1989) The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta 988(3):427–454

    Article  CAS  Google Scholar 

  32. Deranieh RM, Greenberg ML (2009) Cellular consequences of inositol depletion. Biochem Soc Trans 37(Pt 5):1099–1103. https://doi.org/10.1042/BST0371099

    Article  CAS  PubMed  Google Scholar 

  33. Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283(12):7309–7313. https://doi.org/10.1074/jbc.R700042200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burton LE, Wells WW (1976) myo-Inositol metabolism during lactation and development in the rat. The prevention of lactation-induced fatty liver by dietary myo-inositol. J Nutr 106(11):1617–1628

    Article  CAS  Google Scholar 

  35. Burton LE, Wells WW (1977) Characterization of the lactation-dependent fatty liver in myo-inositol deficient rats. J Nutr 107(10):1871–1883

    Article  CAS  Google Scholar 

  36. Onomi S, Katayama T, Sato K (1999) Effects of dietary myo-inositol related compounds on sucrose-mediated hepatic lipid accumulation in rats. Nutr Res 19(9):1401–1409. https://doi.org/10.1016/s0271-5317(99)00097-4

    Article  CAS  Google Scholar 

  37. Katayama T (1997) Effects of dietary myo-inositol or phytic acid on hepatic concentrations of lipids and hepatic activities of lipogenic enzymes in rats fed on corn starch or sucrose. Nutr Res 17(4):721–728. https://doi.org/10.1016/s0271-5317(97)00042-0

    Article  CAS  Google Scholar 

  38. Katayama T (1994) Effect of dietary addition of myoinositol on lipid-metabolism in rats fed sucrose or corn starch. Nutr Res 14(5):699–706. https://doi.org/10.1016/s0271-5317(05)80205-2

    Article  CAS  Google Scholar 

  39. Shimada M, Hibino M, Takeshita A (2017) Dietary supplementation with myo-inositol reduces hepatic triglyceride accumulation and expression of both fructolytic and lipogenic genes in rats fed a high-fructose diet. Nutr Res 47:21–27. https://doi.org/10.1016/j.nutres.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  40. Ortmeyer HK (1996) Dietary myoinositol results in lower urine glucose and in lower postprandial plasma glucose in obese insulin resistant rhesus monkeys. Obes Res 4(6):569–575

    Article  CAS  Google Scholar 

  41. Croze ML, Vella RE, Pillon NJ, Soula HA, Hadji L, Guichardant M, Soulage CO (2013) Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice. J Nutr Biochem 24(2):457–466. https://doi.org/10.1016/j.jnutbio.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  42. Dang NT, Mukai R, Yoshida K, Ashida H (2010) D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci Biotechnol Biochem 74(5):1062–1067. https://doi.org/10.1271/bbb.90963

    Article  CAS  PubMed  Google Scholar 

  43. Matarrelli B, Vitacolonna E, D’Angelo M, Pavone G, Mattei PA, Liberati M, Celentano C (2013) Effect of dietary myo-inositol supplementation in pregnancy on the incidence of maternal gestational diabetes mellitus and fetal outcomes: a randomized controlled trial. J Matern Fetal Neonatal Med 26(10):967–972. https://doi.org/10.3109/14767058.2013.766691

    Article  CAS  PubMed  Google Scholar 

  44. Konieczna J, Garcia AP, Sanchez J, Palou M, Palou A, Pico C (2013) Oral leptin treatment in suckling rats ameliorates detrimental effects in hypothalamic structure and function caused by maternal caloric restriction during gestation. PLoS One 8(11):e81906. https://doi.org/10.1371/journal.pone.0081906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pico C, Oliver P, Sanchez J, Miralles O, Caimari A, Priego T, Palou A (2007) The intake of physiological doses of leptin during lactation in rats prevents obesity in later life. Int J Obes 31(8):1199–1209

    Article  CAS  Google Scholar 

  46. Castro H, Pomar CA, Palou A, Pico C, Sanchez J (2017) Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600513

    Article  PubMed  Google Scholar 

  47. Martin LJ, Woo JG, Geraghty SR, Altaye M, Davidson BS, Banach W, Dolan LM, Ruiz-Palacios GM, Morrow AL (2006) Adiponectin is present in human milk and is associated with maternal factors. Am J Clin Nutr 83(5):1106–1111. https://doi.org/10.1093/ajcn/83.5.1106

    Article  CAS  PubMed  Google Scholar 

  48. Woo JG, Guerrero ML, Altaye M, Ruiz-Palacios GM, Martin LJ, Dubert-Ferrandon A, Newburg DS, Morrow AL (2009) Human milk adiponectin is associated with infant growth in two independent cohorts. Breastfeed Med 4(2):101–109. https://doi.org/10.1089/bfm.2008.0137

    Article  PubMed  PubMed Central  Google Scholar 

  49. Woo JG, Guerrero ML, Guo F, Martin LJ, Davidson BS, Ortega H, Ruiz-Palacios GM, Morrow AL (2012) Human milk adiponectin affects infant weight trajectory during the second year of life. J Pediatr Gastroenterol Nutr 54(4):532–539. https://doi.org/10.1097/MPG.0b013e31823fde04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weyermann M, Brenner H, Rothenbacher D (2007) Adipokines in human milk and risk of overweight in early childhood: a prospective cohort study. Epidemiology 18(6):722–729

    Article  Google Scholar 

  51. Lee HJ, Lee JO, Kim N, Kim JK, Kim HI, Lee YW, Kim SJ, Choi JI, Oh Y, Kim JH, Suyeon H, Park SH, Kim HS (2015) Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol Endocrinol 29(6):873–881. https://doi.org/10.1210/me.2014-1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, Tavintharan S, Sum CF, Lim SC (2013) Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Compl 27(4):365–369. https://doi.org/10.1016/j.jdiacomp.2013.03.002

    Article  Google Scholar 

  53. Fatima SS, Khalid E, Ladak AA, Ali SA (2018) Colostrum and mature breast milk analysis of serum irisin and sterol regulatory element-binding proteins-1c in gestational diabetes mellitus. J Matern Fetal Neonatal Med. https://doi.org/10.1080/14767058.2018.1454422

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Spanish Government (AGL2015-67019-P; MINECO/FEDER, UE). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of the ISCIII. The Laboratory of Molecular Biology, Nutrition and Biotechnology is a member of the European Research Network of Excellence NuGO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreu Palou.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1389 kb)

Supplementary material 2 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palou, M., Torrens, J.M., Castillo, P. et al. Metabolomic approach in milk from calorie-restricted rats during lactation: a potential link to the programming of a healthy phenotype in offspring. Eur J Nutr 59, 1191–1204 (2020). https://doi.org/10.1007/s00394-019-01979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-01979-6

Keywords

Navigation