Skip to main content

Advertisement

Log in

Effects of dietary glutamine supplementation on immune cell polarization and muscle regeneration in diabetic mice with limb ischemia

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Diabetes is a chronic inflammatory disorder resulting in endothelial dysfunction which contributes to peripheral arterial disease and limb ischemia. Leukocytes play critical roles in vascular and tissue remodelling after ischemia. This study investigated the effects of dietary glutamine (GLN) supplementation on immune cell polarization in diabetic mice subjected to limb ischemia.

Methods

Diabetes was induced by an intraperitoneal injection of streptozotocin for 5 consecutive days in C57BL/6J mice. Diabetic mice were fed the AIN-93 diet or an AIN-93 diet in which a part of the casein was replaced by GLN. After 3 weeks of the dietary intervention, mice were subjected to unilateral femoral artery ligation to induce limb ischemia.

Results

GLN supplementation enhanced the proportion of anti-inflammatory monocytes and regulatory T cells in the blood. Expression of C-C motif chemokine receptor 5 by activated CD4+ T cells was promoted and prolonged in the GLN-supplemented group. GLN downregulated the percentage of M1 macrophages in muscle tissues which was correlated with lower levels of C-C motif chemokine ligand 2 in plasma. The muscle M1/M2 ratio was also reduced in the GLN group. Gene expression of interleukin-6 was suppressed by GLN supplementation, while expression levels of the peroxisome proliferator-activated receptor γ and myogenic differentiation 1 genes were elevated in post-ischemic muscles. Histological findings also indicated that muscle regeneration was accelerated in the GLN group.

Conclusions

GLN supplementation in diabetic mice may exert more-balanced polarization of CD4+ T cells, monocytes, and macrophages, thus attenuating inflammatory responses and contributing to muscle regeneration after limb ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS (2015) Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 16(10):25234–25263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spinetti G, Kraenkel N, Emanueli C, Madeddu P (2008) Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapies. Cardiovasc Res 78(2):265–273

    Article  CAS  PubMed  Google Scholar 

  3. Marso SP, Hiatt WR (2006) Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol 47(5):921–929

    Article  PubMed  Google Scholar 

  4. Kang L, Chen Q, Wang L, Gao L, Meng K, Chen J, Ferro A, Xu B (2009) Decreased mobilization of endothelial progenitor cells contributes to impaired neovascularization in diabetes. Clin Exp Pharmacol Physiol 36(10):e47–56

    Article  CAS  PubMed  Google Scholar 

  5. Vignaud A, Ramond F, Hourde C, Keller A, Butler-Browne G, Ferry A (2007) Diabetes provides an unfavorable environment for muscle mass and function after muscle injury in mice. Pathobiology 74(5):291–300

    Article  CAS  PubMed  Google Scholar 

  6. Silvestre JS, Smadja DM, Levy BI (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 93(4):1743–1802

    Article  CAS  PubMed  Google Scholar 

  7. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Munoz-Canoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tidball JG (2017) Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol 17(3):165–178 e1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsieh PL, Rybalko V, Baker AB, Suggs LJ, Farrar RP (2018) Recruitment and therapeutic application of macrophages in skeletal muscles after hind limb ischemia. J Vasc Surg 67(6):1908–1920

    Article  PubMed  Google Scholar 

  11. Yang W, Hu P (2018) Skeletal muscle regeneration is modulated by inflammation. J Orthop Translat 13:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Xiao Z, Qu C, Cui W, Wang X, Du J (2014) CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. J Immunol 193(10):5149–5160

    Article  CAS  PubMed  Google Scholar 

  13. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13.

  14. Fu X, Xiao J, Wei Y, Li S, Liu Y, Yin J, Sun K, Sun H, Wang H, Zhang Z, Zhang BT, Sheng C, Wang H, Hu P (2015) Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 25(6):655–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hata T, Takahashi M, Hida S, Kawaguchi M, Kashima Y, Usui F, Morimoto H, Nishiyama A, Izawa A, Koyama J, Iwakura Y, Taki S, Ikeda U (2011) Critical role of Th17 cells in inflammation and neovascularization after ischaemia. Cardiovasc Res 90(2):364–372

    Article  CAS  PubMed  Google Scholar 

  16. Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P (2017) Regulatory T cells and skeletal muscle regeneration. FEBS J 284(4):517–524

    Article  CAS  PubMed  Google Scholar 

  17. Labow BI, Souba WW (2000) Glutamine. World J Surg 24(12):1503–1513

    Article  CAS  PubMed  Google Scholar 

  18. Roth E (2008) Nonnutritive effects of glutamine. J Nutr 138(10):2025S–2031S

    Article  CAS  PubMed  Google Scholar 

  19. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, Blonska M, Lin X, Sun SC (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40(5):692–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3):419–430

    Article  CAS  PubMed  Google Scholar 

  21. Menge BA, Schrader H, Ritter PR, Ellrichmann M, Uhl W, Schmidt WE, Meier JJ (2010) Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regul Pept 160(1–3):75–80

    Article  CAS  PubMed  Google Scholar 

  22. Xia C, Rao X, Zhong J (2017) Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J Diabetes Res 2017:6494795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walker LS, von Herrath M (2016) CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol 183(1):16–29

    Article  CAS  PubMed  Google Scholar 

  24. Cucak H, Grunnet LG, Rosendahl A (2014) Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol 95(1):149–160

    Article  CAS  PubMed  Google Scholar 

  25. D'Souza DM, Al-Sajee D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:379

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H (1988) Low-dose streptozocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset. Diabetes 37(1):21–27

    Article  CAS  PubMed  Google Scholar 

  27. Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP, Consortium NIHMMPC (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534

    Google Scholar 

  28. Tsai PH, Yeh CL, Liu JJ, Chiu WC, Yeh SL (2012) Effects of dietary glutamine on inflammatory mediator gene expressions in rats with streptozotocin-induced diabetes. Nutrition 28(3):288–293

    Article  CAS  PubMed  Google Scholar 

  29. Tsai PH, Liu JJ, Yeh CL, Chiu WC, Yeh SL (2012) Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes. Br J Nutr 107(8):1112–1118

    Article  CAS  PubMed  Google Scholar 

  30. Takeda K, Duan LJ, Takeda H, Fong GH (2014) Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism. Am J Pathol 184(3):686–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan J, Tie G, Park B, Yan Y, Nowicki PT, Messina LM (2009) Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells. J Vasc Surg 50(6):1412–1422

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lozeron P, Mantsounga CS, Broqueres-You D, Dohan A, Polivka M, Deroide N, Silvestre JS, Kubis N, Lévy BI (2015) Characterization of nerve and microvessel damage and recovery in type 1 diabetic mice after permanent femoral artery ligation. J Neurosci Res 93(9):1451–1461

    Article  CAS  PubMed  Google Scholar 

  33. Su ST, Yeh CL, Hou YC, Pai MH, Yeh SL (2017) Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia. J Nutr Biochem 40:86–94

    Article  CAS  PubMed  Google Scholar 

  34. Hori K, Tsujii M, Iino T, Satonaka H, Uemura T, Akeda K, Hasegawa M, Uchida A, Sudo A (2013) Protective effect of edaravone for tourniquet-induced ischemia-reperfusion injury on skeletal muscle in murine hindlimb. BMC Musculoskelet Disord 14:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Folker ES, Baylies MK (2013) Nuclear positioning in muscle development and disease. Front Physiol 4:363

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xiao W, Liu Y, Luo B, Zhao L, Liu X, Zeng Z, Chen P (2016) Time-dependent gene expression analysis after mouse skeletal muscle contusion. J Sport Health Sci 5(1):101–108

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui G, Qin X, Zhang Y, Gong Z, Ge B, Zang YQ (2009) Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem 284(41):28420–28429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simon F, Oberhuber A, Floros N, Busch A, Wagenhauser MU, Schelzig H, Duran M (2018) Acute limb ischemia-much more than just a lack of oxygen. Int J Mol Sci 19(2):374

    Article  CAS  PubMed Central  Google Scholar 

  39. Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283(16):10930–10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alves WF, Aguiar EE, Guimaraes SB, da Silva Filho AR, Pinheiro PM, Soares Gdos S, de Vasconcelos PR (2010) L-alanyl-glutamine preoperative infusion in patients with critical limb ischemia subjected to distal revascularization reduces tissue damage and protects from oxidative stress. Ann Vasc Surg 24(4):461–467

    Article  PubMed  Google Scholar 

  41. Shih YM, Shih JM, Pai MH, Hou YC, Yeh CL, Yeh SL (2016) Glutamine administration after sublethal lower limb ischemia reduces inflammatory reaction and offers organ protection in ischemia/reperfusion injury. JPEN J Parenter Enteral Nutr 40(8):1122–1130

    Article  CAS  PubMed  Google Scholar 

  42. Börner C, Lanciotti S, Koch T, Höllt V, Kraus J (2013) μ opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol 263(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  43. Varga G, Foell D (2018) Anti-inflammatory monocytes-interplay of innate and adaptive immunity. Mol Cell Pediatr 5(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S, Geissmann F (2013) Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 153(2):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krieger JR, Ogle ME, McFaline-Figueroa J, Segar CE, Temenoff JS, Botchwey EA (2016) Spatially localized recruitment of anti-inflammatory monocytes by SDF-1alpha-releasing hydrogels enhances microvascular network remodeling. Biomaterials 77:280–290

    Article  CAS  PubMed  Google Scholar 

  46. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    Article  CAS  PubMed  Google Scholar 

  47. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178(4):2018–2027

    Article  CAS  PubMed  Google Scholar 

  49. Yaqoob P, Calder PC (1997) Glutamine requirement of proliferating T lymphocytes. Nutrition 13(7–8):646–651

    Article  CAS  PubMed  Google Scholar 

  50. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG (2010) CCR51 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol 176(5):2177–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yurchenko E, Tritt M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA (2006) CCR52-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med 203(11):2451–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weber C (2003) Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J Mol Med (Berl) 81(1):4–19

    Article  CAS  Google Scholar 

  53. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L (2011) Macrophages recruited via CCR55 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25(1):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, Tan B, Zhu G, Deng J, Yin Y (2019) Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes. Adv Nutr 10:321–330. https://doi.org/10.1093/advances/nmy084

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhou J, Liu B, Liang C, Li Y, Song YH (2016) Cytokine signaling in skeletal muscle wasting. Trends Endocrinol Metab 27(5):335–347

    Article  CAS  PubMed  Google Scholar 

  57. Chen SE, Jin B, Li YP (2007) TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 292(5):C1660–1671

    Article  CAS  PubMed  Google Scholar 

  58. Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J (2013) Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 288(3):1489–1499

    Article  CAS  PubMed  Google Scholar 

  59. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189(7):3669–3680

    Article  CAS  PubMed  Google Scholar 

  60. Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N (2012) TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Remels AH, Langen RC, Gosker HR, Russell AP, Spaapen F, Voncken JW, Schrauwen P, Schols AM (2009) PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab 297(1):E174–183

    Article  CAS  PubMed  Google Scholar 

  62. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4(2):a008342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants (MOST 103-2320-B-038-016-MY3 and MOST 106-2314-B-038-086) from the Ministry of Science and Technology, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chen Hou.

Ethics declarations

Ethical standards

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, MH., Lei, CS., Su, ST. et al. Effects of dietary glutamine supplementation on immune cell polarization and muscle regeneration in diabetic mice with limb ischemia. Eur J Nutr 59, 921–933 (2020). https://doi.org/10.1007/s00394-019-01951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-01951-4

Keywords

Navigation