Skip to main content

Polyphenol intake and metabolic syndrome risk in European adolescents: the HELENA study

Abstract

Purpose

The role of polyphenol intake during adolescence to prevent metabolic syndrome (MetS) is little explored. This study aimed to evaluate the association between intake of total polyphenols, polyphenol classes and the 10 most consumed individual polyphenols with MetS risk in European adolescents.

Methods

Of the cross-sectional HELENA study, 657 adolescents (54% girls; 14.8% overweight; 12.5–17.5 year) had a fasting blood sample and polyphenol intake data from two non-consecutive 24-h recalls matched with the Phenol-Explorer database. MetS was defined via the pediatric American Heart Association definition. Multilevel linear regressions examined the associations of polyphenol quartiles with MetS components, while logistic regression examined the associations with MetS risk.

Results

After adjusting for all potential confounders (socio-demographics and nine nutrients), total polyphenol intake, polyphenol classes and individual polyphenols were not associated with MetS risk. From all MetS components, only BMI z-score was modestly inversely associated with total polyphenol intake. Further sub analyses on polyphenol classes revealed that flavonoid intake was significantly associated with higher diastolic blood pressure and lower BMI, and phenolic acid intake was associated with higher low-density cholesterol. For individual polyphenols, the above BMI findings were often confirmed (not independent from dietary intake) and a few associations were found with insulin resistance.

Conclusion

Higher intakes of total polyphenols and flavonoids were inversely associated with BMI. No consistent associations were found for other MetS components.

This is a preview of subscription content, access via your institution.

Abbreviations

AHA:

Pediatric American Heart Association

BMI:

Body mass index

DBP:

Diastolic blood pressure

HDL-c:

High-density lipoprotein

HOMA-IR:

Homeostasis model of assessment of insulin resistance

LDL-c:

Low-density lipoprotein

Q:

Quartile

SBP:

Systolic blood pressure

TG:

Triglycerides

WC:

Waist circumference

WHR:

Waist–hip ratio

References

  1. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, Wong G, Bennett P, Shaw J, Caprio S, Group IDFC (2007) The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr Diabetes 8(5):299–306. https://doi.org/10.1111/j.1399-5448.2007.00271.x

    Article  PubMed  Google Scholar 

  2. Morrison JA, Friedman LA, Wang P, Glueck CJ (2008) Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr 152(2):201–206. https://doi.org/10.1016/j.jpeds.2007.09.010

    CAS  Article  PubMed  Google Scholar 

  3. Magnussen CG, Koskinen J, Chen W, Thomson R, Schmidt MD, Srinivasan SR, Kivimaki M, Mattsson N, Kahonen M, Laitinen T, Taittonen L, Ronnemaa T, Viikari JS, Berenson GS, Juonala M, Raitakari OT (2010) Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation 122(16):1604–1611. https://doi.org/10.1161/CIRCULATIONAHA.110.940809

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pistollato F, Battino M (2014) Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci Technol 40(1):62–81. https://doi.org/10.1016/j.tifs.2014.07.012

    CAS  Article  Google Scholar 

  5. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747. https://doi.org/10.1093/ajcn/79.5.727

    CAS  Article  Google Scholar 

  6. Amiot MJ, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17(7):573–586. https://doi.org/10.1111/obr.12409

    CAS  Article  PubMed  Google Scholar 

  7. Chiva-Blanch G, Badimon L (2017) Effects of polyphenol intake on metabolic syndrome: current evidences from human trials. Oxid Med Cell Longev. https://doi.org/10.1155/2017/5812401

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pajak A (2017) Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr 56(4):1409–1420. https://doi.org/10.1007/s00394-016-1187-z

    CAS  Article  PubMed  Google Scholar 

  9. Tresserra-Rimbau A, Rimm EB, Medina-Remon A, Martinez-Gonzalez MA, de la Torre R, Corella D, Salas-Salvado J, Gomez-Gracia E, Lapetra J, Aros F, Fiol M, Ros E, Serra-Majem L, Pinto X, Saez GT, Basora J, Sorli JV, Martinez JA, Vinyoles E, Ruiz-Gutierrez V, Estruch R, Lamuela-Raventos RM, Investigators PS (2014) Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis 24(6):639–647. https://doi.org/10.1016/j.numecd.2013.12.014

    CAS  Article  PubMed  Google Scholar 

  10. Adriouch S, Kesse-Guyot E, Feuillet T, Touvier M, Olie V, Andreeva V, Hercberg S, Galan P, Fezeu LK (2018) Total and specific dietary polyphenol intakes and 6-year anthropometric changes in a middle-aged general population cohort. Int J Obes (Lond) 42(3):310–317. https://doi.org/10.1038/ijo.2017.227

    CAS  Article  Google Scholar 

  11. Wisnuwardani RW, De Henauw S, Androutsos O, Forsner M, Gottrand F, Huybrechts I, Knaze V, Kersting M, Le Donne C, Marcos A, Molnar D, Rothwell JA, Scalbert A, Sjostrom M, Widhalm K, Moreno LA, Michels N (2018) Estimated dietary intake of polyphenols in European adolescents: the HELENA study. Eur J Nutr. https://doi.org/10.1007/s00394-018-1787-x

    Article  PubMed  Google Scholar 

  12. Moreno LA, De Henauw S, Gonzalez-Gross M, Kersting M, Molnar D, Gottrand F, Barrios L, Sjostrom M, Manios Y, Gilbert CC, Leclercq C, Widhalm K, Kafatos A, Marcos A, Grp HS (2008) Design and implementation of the healthy lifestyle in Europe by nutrition in adolescence cross-sectional study. Int J Obes 32:S4–S11. https://doi.org/10.1038/ijo.2008.177

    Article  Google Scholar 

  13. Iliescu C, Beghin L, Maes L, De Bourdeaudhuij I, Libersa C, Vereecken C, Gonzalez-Gross M, Kersting M, Molnar D, Leclercq C, Sjostrom M, Manios Y, Wildhalm K, Kafatos A, Moreno LA, Gottrand F, Grp HS (2008) Socioeconomic questionnaire and clinical assessment in the HELENA cross-sectional study: methodology. Int J Obes 32:S19–S25. https://doi.org/10.1038/ijo.2008.178

    Article  Google Scholar 

  14. Currie C, Molcho M, Boyce W, Holstein B, Torsheim T, Richter M (2008) Researching health inequalities in adolescents: the development of the Health Behaviour in School-Aged Children (HBSC) Family Affluence Scale. Soc Sci Med 66(6):1429–1436. https://doi.org/10.1016/j.socscimed.2007.11.024

    Article  PubMed  Google Scholar 

  15. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51(3):170–179. https://doi.org/10.1136/adc.51.3.170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Nagy E, Vicente-Rodriguez G, Manios Y, Beghin L, Iliescu C, Censi L, Dietrich S, Ortega FB, De Vriendt T, Plada M, Moreno LA, Molnar D, Grp HS (2008) Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int J Obes 32:S58–S65. https://doi.org/10.1038/ijo.2008.184

    Article  Google Scholar 

  17. Cole TJ, Freeman JV, Preece MA (1995) Body-mass index reference curves for the UK, 1990. Arch Dis Child 73(1):25–29. doi:https://doi.org/10.1136/adc.73.1.25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment—insulin resistance and beta-cell function from fasting plasma-glucose and insulin concentrations in man. Diabetologia 28(7):412–419. doi:https://doi.org/10.1007/Bf00280883

    CAS  Article  Google Scholar 

  19. Pacifico L, Anania C, Martino F, Poggiogalle E, Chiarelli F, Arca M, Chiesa C (2011) Management of metabolic syndrome in children and adolescents. Nutr Metab Cardiovasc Dis 21(6):455–466. https://doi.org/10.1016/j.numecd.2011.01.011

    CAS  Article  PubMed  Google Scholar 

  20. Vereecken CA, Covents M, Sichert-Hellert W, Alvira JMF, Le Donne C, De Henauw S, De Vriendt T, Phillipp MK, Beghin L, Manios Y, Hallstrom L, Poortvliet E, Matthys C, Plada M, Nagy E, Moreno LA, Grp HS (2008) Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int J Obes 32:S26–S34. https://doi.org/10.1038/ijo.2008.180

    Article  Google Scholar 

  21. Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database Oxf. https://doi.org/10.1093/database/bap024

    Article  Google Scholar 

  22. Penczynski KJ, Remer T, Herder C, Kalhoff H, Rienks J, Markgraf DF, Roden M, Buyken AE (2018) Habitual flavonoid intake from fruit and vegetables during adolescence and serum lipid levels in early adulthood: a prospective analysis. Nutrients. https://doi.org/10.3390/nu10040488

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vitale M, Vaccaro O, Masulli M, Bonora E, Del Prato S, Giorda CB, Nicolucci A, Squatrito S, Auciello S, Babini AC, Bani L, Buzzetti R, Cannarsa E, Cignarelli M, Cigolini M, Clemente G, Cocozza S, Corsi L, D’Angelo F, Dall’Aglio E, Di Cianni G, Fontana L, Gregori G, Grioni S, Giordano C, Iannarelli R, Iovine C, Lapolla A, Lauro D, Laviola L, Mazzucchelli C, Signorini S, Tonutti L, Trevisan R, Zamboni C, Riccardi G, Rivellese AA, Group TIS (2016) Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin Nutr 36(6):1686–1692. https://doi.org/10.1016/j.clnu.2016.11.002

    CAS  Article  PubMed  Google Scholar 

  24. Vanlancker T, Schaubroeck E, Vyncke K, Cadenas-Sanchez C, Breidenassel C, Gonzalez-Gross M, Gottrand F, Moreno LA, Beghin L, Molnar D, Manios Y, Gunter MJ, Widhalm K, Leclercq C, Dallongeville J, Ascension M, Kafatos A, Castillo MJ, De Henauw S, Ortega FB, Huybrechts I, group* H (2017) Comparison of definitions for the metabolic syndrome in adolescents. The HELENA study. Eur J Pediatr 176(2):241–252. https://doi.org/10.1007/s00431-016-2831-6

    Article  PubMed  Google Scholar 

  25. Rienks J, Barbaresko J, Oluwagbemigun K, Schmid M, Nothlings U (2018) Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am J Clin Nutr 108(1):49–61. https://doi.org/10.1093/ajcn/nqy083

    Article  PubMed  Google Scholar 

  26. Sohrab G, Ebrahimof S, Hosseinpour-Niazi S, Yuzbashian E, Mirmiran P, Azizi F (2018) The association of dietary intakes of total polyphenol and its subclasses with the risk of metabolic syndrome: tehran lipid and glucose study. Metab Syndr Relat Disord. https://doi.org/10.1089/met.2017.0140

    Article  PubMed  Google Scholar 

  27. Bastien M, Poirier P, Lemieux I, Despres JP (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56(4):369–381. https://doi.org/10.1016/j.pcad.2013.10.016

    Article  PubMed  Google Scholar 

  28. Carrera-Quintanar L, Roa RIL, Quintero-Fabian S, Sanchez-Sanchez MA, Vizmanos B, Ortuno-Sahagun D (2018) Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat Inflamm. https://doi.org/10.1155/2018/9734845

    Article  Google Scholar 

  29. Most J, Goossens GH, Jocken JWE, Blaak EE (2014) Short-term supplementation with a specific combination of dietary polyphenols increases energy expenditure and alters substrate metabolism in overweight subjects. Int J Obes 38(5):698–706. https://doi.org/10.1038/ijo.2013.231

    CAS  Article  Google Scholar 

  30. Villani A, Wright H, Slater G, Buckley J (2018) A randomised controlled intervention study investigating the efficacy of carotenoid-rich fruits and vegetables and extra-virgin olive oil on attenuating sarcopenic symptomology in overweight and obese older adults during energy intake restriction: protocol paper. BMC Geriatr 18(1):2. https://doi.org/10.1186/s12877-017-0700-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Farhat G, Drummond S, Al-Dujaili EAS (2017) Polyphenols and their role in obesity management: a systematic review of randomized clinical trials. Phytother Res 31(7):1005–1018. https://doi.org/10.1002/ptr.5830

    CAS  Article  PubMed  Google Scholar 

  32. Medina-Remon A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E, Buil-Cosiales P, Sacanella E, Covas MI, Corella D, Salas-Salvado J, Gomez-Gracia E, Ruiz-Gutierrez V, Ortega-Calvo M, Garcia-Valdueza M, Aros F, Saez GT, Serra-Majem L, Pinto X, Vinyoles E, Estruch R, Lamuela-Raventos RM, Investigators PS (2015) Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis 25(1):60–67. https://doi.org/10.1016/j.numecd.2014.09.001

    CAS  Article  PubMed  Google Scholar 

  33. Tresserra-Rimbau A, Rimm EB, Medina-Remon A, Martinez-Gonzalez MA, Lopez-Sabater MC, Covas MI, Corella D, Salas-Salvado J, Gomez-Gracia E, Lapetra J, Aros F, Fiol M, Ros E, Serra-Majem L, Pinto X, Munoz MA, Gea A, Ruiz-Gutierrez V, Estruch R, Lamuela-Raventos RM, Investigators PS (2014) Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial. BMC Med 12:77. https://doi.org/10.1186/1741-7015-12-77

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Vetrani C, Vitale M, Bozzetto L, Della Pepa G, Cocozza S, Costabile G, Mangione A, Cipriano P, Annuzzi G, Rivellese AA (2018) Association between different dietary polyphenol subclasses and the improvement in cardiometabolic risk factors: evidence from a randomized controlled clinical trial. Acta Diabetol 55(2):149–153. https://doi.org/10.1007/s00592-017-1075-x

    CAS  Article  PubMed  Google Scholar 

  35. Hurt RT, Wilson T (2012) Geriatric obesity: evaluating the evidence for the use of flavonoids to promote weight loss. J Nutr Gerontol Geriatr 31(3):269–289. https://doi.org/10.1080/21551197.2012.698222

    Article  PubMed  Google Scholar 

  36. Hossain MK, Dayem AA, Han J, Yin Y, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci. https://doi.org/10.3390/ijms17040569

    Article  Google Scholar 

  37. Penczynski KJ, Herder C, Krupp D, Rienks J, Egert S, Wudy SA, Roden M, Remer T, Buyken AE (2018) Flavonoid intake from fruit and vegetables during adolescence is prospectively associated with a favourable risk factor profile for type 2 diabetes in early adulthood. Eur J Nutr. https://doi.org/10.1007/s00394-018-1631-3

    Article  PubMed  Google Scholar 

  38. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM, Management SS (2017) Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. https://doi.org/10.1542/peds.2017-1904

    Article  PubMed  Google Scholar 

  39. Miranda AM, Steluti J, Fisberg RM, Marchioni DM (2017) Association between coffee consumption and its polyphenols with cardiovascular risk factors: a population-based study. Nutrients. https://doi.org/10.3390/nu9030276

    Article  PubMed  PubMed Central  Google Scholar 

  40. Agudelo-Ochoa GM, Pulgarin-Zapata IC, Velasquez-Rodriguez CM, Duque-Ramirez M, Naranjo-Cano M, Quintero-Ortiz MM, Lara-Guzman OJ, Munoz-Durango K (2016) Coffee consumption increases the antioxidant capacity of plasma and has no effect on the lipid profile or vascular function in healthy adults in a randomized controlled trial. J Nutr 146(3):524–531. https://doi.org/10.3945/jn.115.224774

    CAS  Article  PubMed  Google Scholar 

  41. Karabudak E, Turkozu D, Koksal E (2015) Association between coffee consumption and serum lipid profile. Exp Ther Med 9(5):1841–1846. https://doi.org/10.3892/etm.2015.2342

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. NCEP (1992) National cholesterol education program: highlights of the report of the expert panel on blood cholesterol levels in children and adolescents. US Department of Health and Human Services, Public Health Service. National Institutes of Health, National Heart, Lung, and BloodInstitute. J Am Osteopath Assoc 92 (3):380–388

    Google Scholar 

  43. Panagiotakos DB, Pitsavos C, Chrysohoou C, Kokkinos P, Toutouzas P, Stefanadis C (2003) The J-shaped effect of coffee consumption on the risk of developing acute coronary syndromes: the CARDIO2000 case-control study. J Nutr 133(10):3228–3232

    CAS  Article  Google Scholar 

  44. Cornish SM, Chilibeck PD, Paus-Jennsen L, Biem HJ, Khozani T, Senanayake V, Vatanparast H, Little JP, Whiting SJ, Pahwa P (2009) A randomized controlled trial of the effects of flaxseed lignan complex on metabolic syndrome composite score and bone mineral in older adults. Appl Physiol Nutr Metab 34(2):89–98. https://doi.org/10.1139/H08-142

    CAS  Article  PubMed  Google Scholar 

  45. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892. https://doi.org/10.1089/ars.2012.4581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu S, Wang Z, Heshka S, Heo M, Faith MS, Heymsfield SB (2002) Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr 76(4):743–749. https://doi.org/10.1093/ajcn/76.4.743

    CAS  Article  PubMed  Google Scholar 

  47. de Melo TS, Lima PR, Carvalho KM, Fontenele TM, Solon FR, Tome AR, de Lemos TL, da Cruz Fonseca SG, Santos FA, Rao VS, de Queiroz MG (2017) Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Braz J Med Biol Res 50(1):e5630. https://doi.org/10.1590/1414-431X20165630

    Article  PubMed  PubMed Central  Google Scholar 

  48. Salvado MJ, Casanova E, Fernandez-Iglesias A, Arola L, Blade C (2015) Roles of proanthocyanidin rich extracts in obesity. Food Funct 6(4):1053–1071. https://doi.org/10.1039/c4fo01035c

    CAS  Article  PubMed  Google Scholar 

  49. Sano T, Nagayasu S, Suzuki S, Iwashita M, Yamashita A, Shinjo T, Sanui T, Kushiyama A, Kanematsu T, Asano T, Nishimura F (2017) Epicatechin downregulates adipose tissue CCL19 expression and thereby ameliorates diet-induced obesity and insulin resistance. Nutr Metab Cardiovasc Dis 27(3):249–259. https://doi.org/10.1016/j.numecd.2016.11.008

    CAS  Article  PubMed  Google Scholar 

  50. Cremonini E, Bettaieb A, Haj FG, Fraga CG, Oteiza PI (2016) (−)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch Biochem Biophys 599:13–21. https://doi.org/10.1016/j.abb.2016.03.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Luo JM, Han LL, Liu L, Gao LJ, Xue B, Wang Y, Ou SY, Miller M, Peng XC (2018) Catechin supplemented in a FOS diet induces weight loss by altering cecal microbiota and gene expression of colonic epithelial cells. Food Funct 9(5):2962–2969. https://doi.org/10.1039/c8fo00035b

    CAS  Article  PubMed  Google Scholar 

  52. Matsumoto C (2018) Cocoa polyphenols: evidence from epidemiological studies. Curr Pharm Design 24(2):140–145. https://doi.org/10.2174/1381612823666171115095720

    CAS  Article  Google Scholar 

  53. Vlachojannis J, Erne P, Zimmermann B, Chrubasik-Hausmann S (2016) The impact of cocoa flavanols on cardiovascular health. Phytother Res 30(10):1641–1657. https://doi.org/10.1002/ptr.5665

    CAS  Article  PubMed  Google Scholar 

  54. Heiss C, Sansone R, Karimi H, Krabbe M, Schuler D, Rodriguez-Mateos A, Kraemer T, Cortese-Krott MM, Kuhnle GG, Spencer JP, Schroeter H, Merx MW, Kelm M, Flaviola Consortium EUtFP (2015) Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age (Dordr) 37(3):9794. https://doi.org/10.1007/s11357-015-9794-9

    CAS  Article  Google Scholar 

  55. Cuenca-Garcia M, Ruiz JR, Ortega FB, Castillo MJ, Grp HS (2014) Association between chocolate consumption and fatness in European adolescents. Nutrition 30(2):236–239. https://doi.org/10.1016/j.nut.2013.07.011

    Article  PubMed  Google Scholar 

  56. Rienks J, Barbaresko J, Nothlings U (2017) Association of polyphenol biomarkers with cardiovascular disease and mortality risk: a systematic review and meta-analysis of observational studies. Nutrients. https://doi.org/10.3390/nu9040415

    Article  PubMed  PubMed Central  Google Scholar 

  57. Edmands WM, Ferrari P, Rothwell JA, Rinaldi S, Slimani N, Barupal DK, Biessy C, Jenab M, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC, Katzke VA, Kuhn T, Boeing H, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Grioni S, Tumino R, Vineis P, Mattiello A, Romieu I, Scalbert A (2015) Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr 102(4):905–913. https://doi.org/10.3945/ajcn.114.101881

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all fieldworkers and all participating adolescents. We acknowledge the work of Mieke De Maeyer and the Phenol explorer team for the support of polyphenol’ estimation.

Funding

The HELENA Study was carried out with the financial support of the European Community Sixth RTD Framework Programme (Contract FOODCT-2005-007034). The writing group takes sole responsibility for the content of this article. The European Community is not liable for any use that may be made of the information contained therein. The first author was sponsored as PhD student by Indonesia Endowment Fund for Education (LPDP, Indonesia).

Author information

Authors and Affiliations

Authors

Contributions

RWW formulated the research question, has analysed the data, prepared the estimation of polyphenols, and wrote a draft of the paper. NM helped in refining the research question, setting up the database, analyzing the data and did editing of the first draft. NM, SDH and LAM are PhD supervisors of RWW; LAM was the coordinator of the HELENA project. From the International Agency for Research on Cancer, we received help from AS, VK, JAR and IH in the linking to their Phenol-Explorer database containing the polyphenol concentrations in food items. All other authors were involved in the HELENA project (coordinator or data collection in their country). All authors have read the draft and agreed on the final version.

Corresponding author

Correspondence to Ratih Wirapuspita Wisnuwardani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 127 KB)

Supplementary material 2 (DOCX 113 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wisnuwardani, R.W., De Henauw, S., Forsner, M. et al. Polyphenol intake and metabolic syndrome risk in European adolescents: the HELENA study. Eur J Nutr 59, 801–812 (2020). https://doi.org/10.1007/s00394-019-01946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-01946-1

Keywords

  • Risk factor
  • Polyphenol
  • Flavonoid
  • Youth
  • Obesity
  • Cholesterol