Betaine-rich sugar beet molasses protects from homocysteine-induced reduction of survival in Caenorhabditis elegans



Homocysteine (Hcy) in humans represents a blood-borne biomarker which predicts the risk of age-related diseases and mortality. Using the nematode Caenorhabditis elegans, we tested whether feeding betaine-rich sugar beet molasses affects the survival under heat stress in the presence of Hcy, in spite of a gene loss in betaine–homocysteine methyltransferase.


Knockdown of the genes relevant for remethylation or transsulfuration of Hcy was achieved by RNA interference (RNAi). Survival assay was conducted under heat stress at 37 °C and Hcy levels were determined by enzyme-linked immunosorbent assay.


Addition of 500 mg/l betaine-rich sugar beet molasses (SBM) prevented the survival reduction that was caused by exposure to Hcy at 37 °C. Although SBM was no longer capable of reducing Hcy levels under RNAi versus homologues for 5, 10-methylenetetrahydrofolate reductase or cystathionine-β-synthase, it still enabled the survival extension by SBM under exposure to Hcy. In contrast, RNAi for the small heat shock protein hsp-16.2 or the foxo transcription factor daf-16 both prevented the extension of survival by betaine-rich molasses in the presence of Hcy.


Our studies demonstrate that betaine-rich SBM is able to prevent survival reduction caused by Hcy in C. elegans in dependence on hsp-16.2 and daf-16 but independent of the remethylation pathway.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



betaine–homocysteine methyltransferase






enhanced chemiluminescence


γ-Glutamylcysteine ligase


reduced glutathione










RNA interference




sugar beet molasses


  1. 1.

    Boldyrev AA (2009) Molecular mechanisms of homocysteine toxicity. Biochemistry 74(6):589–598

    CAS  PubMed  Google Scholar 

  2. 2.

    Haynes WG (2002) Hyperhomocysteinemia, vascular function and atherosclerosis: effects of vitamins. Cardiovasc Drugs Ther 16(5):391–399

    CAS  Article  Google Scholar 

  3. 3.

    Seshadri S, Beiser A, Selhub J, Jacques PF et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346(7):476–483

    CAS  Article  Google Scholar 

  4. 4.

    Bonetti F, Brombo G, Zuliani G (2016) The relationship between hyperhomocysteinemia and neurodegeneration. Neurodegener Dis Manag 6(2):133–145.

    Article  PubMed  Google Scholar 

  5. 5.

    Barron E, Lara J, White M, Mathers JC (2015) Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PLoS One 10(6):e0127550.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Masud R, Baqai HZ (2017) The communal relation of MTHFR, MTR, ACE gene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease. Appl Physiol Nutr Metab 42(10):1009–1014.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10.

    Article  PubMed  Google Scholar 

  8. 8.

    McRae MP (2013) Betaine supplementation decreases plasma homocysteine in healthy adult participants: a meta-analysis. J Chiropr Med 12(1):20–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bito T, Watanabe F (2016) Biochemistry, function, and deficiency of vitamin B12 in Caenorhabditis elegans. Exp Biol Med (Maywood) 241(15):1663–1668.

    CAS  Article  Google Scholar 

  10. 10.

    Leiteritz A, Dilberger B, Wenzel U, Fitzenberger E (2018) Betaine reduces β-amyloid-induced paralysis through activation of cystathionine-β-synthase in an Alzheimer model of Caenorhabditis elegans. Genes Nutr 13:21.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bartke A (2011) Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 366(1561):28–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Stiernagel T (2006) Maintenance of C. elegans. WormBook, ed. The C. elegans Research Community. Worm Book 11:1–11.

    Article  Google Scholar 

  14. 14.

    Lehner B, Tischler J, Fraser AG (2006) RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. Nat Protoc 1(3):1617–1620.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Timmons L, Court D, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–112

    CAS  Article  Google Scholar 

  16. 16.

    Gill MS, Olsen A, Sampayo JN, Lithgow GJ (2003) An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic Biol Med 35:558–565

    CAS  Article  Google Scholar 

  17. 17.

    Wierzbicki AS (2007) Homocysteine and cardiovascular disease: a review of the evidence. Diabetes Vasc Dis Res 4(2):143–150

    Article  Google Scholar 

  18. 18.

    Parnetti L, Bottiglieri T, Lowenthal D (1997) Role of homocysteine in age-related vascular and non-vascular diseases. Aging 9(4):241–257

    CAS  PubMed  Google Scholar 

  19. 19.

    McCully KS (2009) Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci 39(3):219–232

    CAS  PubMed  Google Scholar 

  20. 20.

    Parkhitko AA, Binari R, Zhang N, Asara JM et al (2016) Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. Genes Dev 30(12):1409–1422.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80(3):539–549.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Finkelstein JD, Martin JJ (1984) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem 259(15):9508–9513

    CAS  PubMed  Google Scholar 

  23. 23.

    Gregory JF, DeRatt BN, Rios-Avila L, Ralat M, Stacpoole PW (2016) Vitamin B6 nutritional status and cellular availability of pyridoxal 5′-phosphate govern the function of the transsulfuration pathway’s canonical reactions and hydrogen sulfide production via side reactions. Biochimie 126:21–26.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Módis K, Coletta C, Asimakopoulou A, Szczesny B et al (2014) Effect of S-adenosyl-l-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro. Nitric Oxide 41:146–156.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shakeri M, Cottrell JJ, Wilkinson S, Ringuet M et al (2018) Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals (Basel) 25(8):E162.

    Article  Google Scholar 

  26. 26.

    Giriş M, Doğru-Abbasoğlu S, Soluk-Tekkeşin M, Olgaç V, Uysal M (2018) Effect of betaine treatment on the regression of existing hepatic triglyceride accumulation and oxidative stress in rats fed on high fructose diet. Gen Physiol Biophys 37:563–570.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Peden AS, Mac P, Fei YJ, Castro C et al (2013) Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans. Nat Neurosci 16(12):1794–1801.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Urban N, Tsitsipatis D, Hausig F, Kreuzer K et al (2017) Non-linear impact of glutathione depletion on C. elegans life span and stress resistance. Redox Biol 11:502–515.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37(8):894–898.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Murphy CT, McCarroll SA, Bargmann CI, Fraser A et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Uwe Wenzel.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drobny, A., Meloh, H., Wächtershäuser, E. et al. Betaine-rich sugar beet molasses protects from homocysteine-induced reduction of survival in Caenorhabditis elegans. Eur J Nutr 59, 779–786 (2020).

Download citation


  • Caenorhabditis elegans
  • Betaine
  • Homocysteine
  • Heat shock proteins
  • Daf-16