Skip to main content

Nutritional and health attributes of milk and milk imitations



Modern food technology allows designing products aiming to simulate and replace traditional food. In affluent societies there is a rising tendency to consume foods derived from plants including milk imitations or plant drinks based on cereals, nuts, legumes, oil seeds or other plant families. Herein we review production and composition of such drinks, summarize consumers’ motivations to change from milk to plant drinks and highlight nutritional and health implications of consuming plant drinks instead of milk, in particular if non-fortified and if consumed by infants, children, adolescents and the elderly.


Whereas the macronutrient concentrations of some plant drinks (soy) may approach in some cases (protein) that of cow’s milk, the nutritional quality of most plant drinks, e.g., the biological value of protein and the presence and amount of vitamins and essential minerals with high bioavailability does not. If cow’s milk is exchanged for non-fortified and non-supplemented plant drinks consumers may risk deficiencies of calcium, zinc, iodine, vitamins B2, B12, D, A, and indispensable amino acids, particularly in infants and toddlers who traditionally consume significant portions of milk. The vegetable nature, appearance and taste of such plant drinks may be appealing to adult consumers and be chosen for adding variety to the menu. However, in young children fed exclusively such plant drinks severe metabolic disturbances may occur.


Parents, dietitians, physicians and consumers should be aware of such potential risks, if non-fortified plant drinks are consumed instead of milk.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Gerichtshof der Europäischen Union, Pressemitteilung Nr. 63 (2017) Urteil in der Rechtssache C-422/16 Verband Sozialer Wettbewerb e.V./ GmbH. Accessed 1 Mar 2019

  2. 2.

    Scholz-Ahrens KE (2003) Die Inhaltsstoffe der Milch und ihre Bedeutung für die Gesundheit. Med Welt 54:222–230

    Google Scholar 

  3. 3.

    Miller GD, Jarvis JK, McBean LD (2004) Handbook of dairy foods and nutrition. National Dairy Council, CRC Press, New York

    Google Scholar 

  4. 4.

    WHO (2002) Technical Report Series 935, Joint FAO/WHO/UNU expert consultation on protein and amino acid requirements in human nutrition, Geneva, Switzerland

  5. 5.

    Young VR, Pellett PL (1989) How to evaluate dietary protein. In: Barth CA, Schlimme E (eds) Milk proteins—nutritional, clinical, functional and technological aspects. Steinkopff Verlag Darmstadt Germany, New York, pp 7–36

    Google Scholar 

  6. 6.

    Hoffman JR, Falvo MJ (2004) Protein—which is best? J Sports Sci Med 3(3):118–130 (eCollection 2004 Sep)

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Minocha S, Thomas T, Kurpad AV (2017) Dietary protein and the health–nutrition–agriculture connection in India. J Nutr 147(7):1243–1250

    CAS  PubMed  Google Scholar 

  8. 8.

    Monckeberg F (1997) Prevention of malnutrition in Chile. In: Bendich A, Deckelbaum R (eds) Preventive nutrition, Humana Press Inc. Totowa, NJ, pp 505–522

    Google Scholar 

  9. 9.

    Quann EE, Fulgoni VL, Auestad N (2015) Consuming the daily recommended amounts of dairy products would reduce the prevalence of inadequate micronutrient intakes in the United States: diet modelling study based on NHANES 2007–2010. Nutr J 14(1):90

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Demmer E, Cifelli CJ, Houchins JA, Fulgoni VL (2017) The impact of doubling dairy or plant-based foods on consumption of nutrients of concern and proper bone health for adolescent females. Public Health Nutr 20(5):824–831

    PubMed  Google Scholar 

  11. 11.

    Fulgoni IIIVL, Keast DR, Auestad N, Quann EE (2011) Nutrients from dairy foods are difficult to replace in diets of Americans: food pattern modelling and an analyses of the National Health and Nutrition Examination Survey 2003–2006. Nutr Res 31(10):759–765

    CAS  PubMed  Google Scholar 

  12. 12.

    Thorning TK, Raben A, Tholstrup T, Soedamah-Muthu SS, Givens I, Astrup A (2016) Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res 60(1):32527

    PubMed  Google Scholar 

  13. 13.

    Drouin-Chartier JP, Brassard D, Tessier-Grenier M, Côté JA, Labonté M, Desroches S, Lamarche B (2016) Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Adv Nutr 7(6):1026–1040

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Aune D, Norat T, Romundstad P, Vatten LJ (2013) Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr 98(4):1066–1083

    CAS  PubMed  Google Scholar 

  15. 15.

    Gao D, Ning N, Wang C, Wang Y, Li Q, Meng Z, Liu Y, Li Q (2013) Dairy products consumption and risk of type 2 diabetes: systematic review and dose–response meta-analysis. PLoS One 8:e73965

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Soedamah-Muthu SS, Verberne LD, Ding EL, Engberink MF, Geleijnse JM (2012) Dairy consumption and incidence of hypertension: a dose–response meta-analysis of prospective cohort studies. Hypertension 60:1131–1137

    CAS  PubMed  Google Scholar 

  17. 17.

    Hagemeister H, Scholz-Ahrens KE, Schulte-Coerne H, Agergaard N, Barth CA (1990) Plasma amino acids and cholesterol following consumption of dietary casein or soy protein in minipigs. J Nutr 120(11):1305–1311

    CAS  PubMed  Google Scholar 

  18. 18.

    Scholz-Ahrens KE, Hagemeister H, Unshelm J, Barth CA (1990) Response of hormones modulating plasma cholesterol to dietary casein or soy protein in minipigs. J Nutr 120(11):1387–1392

    CAS  PubMed  Google Scholar 

  19. 19.

    Taciak M, Swiech E, Pastuszewska B (2004) Nutritional value and physiological effects of industrial soybean products differing in protein solubility and trypsin inhibitor content. In: Muzquiz M, Hill GD, Cuadrado C et al (eds) Recent advantages of research in antinutritional factors in legume seeds and oilseeds, vol 110, Humana Press Inc. Totowa, NJ, pp 251–254

    Google Scholar 

  20. 20.

    Meisel H (2005) Biochemical properties of peptides encrypted in bovine milk proteins. Curr Med Chem 12:1905–1919

    CAS  PubMed  Google Scholar 

  21. 21.

    Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47(4):171–182

    PubMed  Google Scholar 

  22. 22.

    Bösze Z (2008) Advances in experimental medicine and biology. In: Bösze Z (ed) Bioactive components of milk, vol 606. Springer Science + Business Media, LLC, New York

    Google Scholar 

  23. 23.

    Boutrou R, Gaudichon C, Dupont D et al (2013) Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr 97:1314–1323

    CAS  PubMed  Google Scholar 

  24. 24.

    Fouillet H, Juillet B, Gaudichon C, Mariotti F, Tomé D, Bos C (2009) Absorption kinetics are a key factor regulating postprandial protein metabolism in response to qualitative and quantitative variations in protein intake. Am J Physiol Regul Integr Comp Physiol 297(6):R1691–R1705. 2009 Oct 7)

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Bruker MO, Jung M (2013) Der Murks mit der Milch. emu-Verlag, 11. Aufl. Lahnstein

  26. 26.

    Rollinger M (2004) Milch besser nicht. Jou-Verlag, Trier

    Google Scholar 

  27. 27.

    Melnik BC, Schmitz G (2017) Milk’s role as an epigenetic regulator in health and disease. Diseases 5(12):1–45

    Google Scholar 

  28. 28.

    Boeing H, Schwingshackl L (2016) Evidenzbasierte Analyse zum Einfluss der Ernährung in der Prävention von Krebskrankheiten, Diabetes mellitus Typ 2 und kardiovaskulären Krankheiten, Deutsche Gesellschaft für Ernährung, vol 13. DGE-Ernährungsbericht, Bonn

    Google Scholar 

  29. 29.

    Schwingshackl L, Schwedhelm C, Hoffmann G et al (2017) Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 105(6):1462–1473

    CAS  PubMed  Google Scholar 

  30. 30.

    Pfeuffer M, Watzl B (2018) Health evaluation of milk and milk products and their ingredients. Ernährungs Umschau 65(2):M70–M81

    Google Scholar 

  31. 31.

    Mousan G, Kamat D (2016) Cow’s milk protein allergy. Clin Pediatr 55(11):1054–1063

    Google Scholar 

  32. 32.

    Heine RG, AlRefaee F, Bachina P, De Leon JC, Geng L, Gong S, Rogacion JM (2017) Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children–common misconceptions revisited. World Allergy Organ J 10(1):41

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Meier T (2015) Sustainable nutrition between the poles of health and environment. Potentials of altered diets and avoidable food losses. Ernährungs Umschau 62(2):22–33

    Google Scholar 

  34. 34.

    Duin EC, Wagner T, Shima S, Prakash D, Cronin B, Yáñez-Ruiz DR, Kindermann M (2016) Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc Natl Acad Sci 113(22):6172–6177

    CAS  PubMed  Google Scholar 

  35. 35.

    Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, Nahrowi (2018) Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital J Anim Sci 17(3):650–656

    CAS  Google Scholar 

  36. 36.

    Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90(6):2580–2595

    CAS  PubMed  Google Scholar 

  37. 37.

    Mäkinen OE, Wanhalinna V, Zannini E et al (2016) Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Crit Rev Food Sci Nutr 56:339–349

    PubMed  Google Scholar 

  38. 38.

    FAO/WHO/UNU Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition, 2002, Geneva, Switzerland, Report 935, p 151

  39. 39.

    Erbersdobler HF, Barth CA, Jahreis G (2017) Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernährungs Umschau 64(10):140–144

    Google Scholar 

  40. 40.

    Mathai JK, Liu Y, Stein HH (2017) Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br J Nutr 117(4):490–499.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Phillips SM (2017) Current concepts and unresolved questions in dietary protein requirements and supplements in adults. Front Nutr 4:13

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Food and Agriculture Organization of the United Nations (2013) Report of an FAO Expert Consultation. Dietary protein quality evaluation in human nutrition. human nutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf. Accessed June 2018

  43. 43.

    Messina M (2016) Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients 8(12):754.

    Article  PubMed Central  Google Scholar 

  44. 44.

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) (2015) Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones.

  45. 45.

    Giahi L, Mohammadmoradi S, Javidan A et al (2016) Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev 74(2):118–1301

    PubMed  Google Scholar 

  46. 46.

    Portman MA, Navarro SL, Bruce ME et al (2016) Soy isoflavone intake is associated with risk of Kawasaki disease. Nutr Res 36(8):827–834

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kattan JD, Cocco RR, Järvinen KM (2011) Milk and soy allergy. Pediatr Clin N Am 58(2):407–426

    Google Scholar 

  48. 48.

    Sabaté J, Ang Y (2009) Nuts and health outcomes: new epidemiologic evidence. Am J Clin Nutr 89(5):1643S–1648S

    PubMed  Google Scholar 

  49. 49.

    Graziani G, Postiglione R, Ritieni A et al (2001) Chemical and nutritional traits of almond milk. Accessed 1 Mar 2019

  50. 50.

    Rainakari A-I, Rita H, Putkonen T et al (2016) New dietary fibre content results for cereals in the Nordic countries using AOAC 2011.25 method. J Food Compos Anal 51:1–8

    CAS  Google Scholar 

  51. 51.

    EFSA Panel (2011) Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(6):2207

    Google Scholar 

  52. 52.

    House JD, Neufeld J, Leson G (2010) Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J Agric Food Chem 58:11801–11807

    CAS  PubMed  Google Scholar 

  53. 53.

    Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140(1–2):65–72

    Google Scholar 

  54. 54.

    Boye J, Wijesinha-Bettoni R, Burlingame B (2012) Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr 108(S2):S183–S211

    CAS  PubMed  Google Scholar 

  55. 55.

    Santoso U, Kobo K, Ota T et al (1996) Nutrient composition of kopyor coconuts (Cocos nucifera L.). Food Chem 51(2):299–304

    Google Scholar 

  56. 56.

    Seow CC, Gwee CN (1997) Coconut milk: chemistry and technology. Int J Food Sci Technol 32:189–201

    CAS  Google Scholar 

  57. 57.

    Souci SW, Fachmann W, Kraut H (2016) Die Zusammensetzung der Lebensmittel Nährwerttabellen. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart

    Google Scholar 

  58. 58.

    Krauss RM, Eckel RH, Howard B et al (2000) AHA Dietary guidelines. Revision 2000: a statement for healthcare professionals from the nutrition Committee of the American Heart Association. Circulation 102:2284–2299

    CAS  PubMed  Google Scholar 

  59. 59.

    Tang Y, Tsao R (2017) Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res 61(7):1600767

    Google Scholar 

  60. 60.

    Bernat N, Chafer M, Chiralt A et al (2015) Almond milk fermented with different potentially probiotic bacteria improves iron uptake by intestinal epithelial (Caco-2) cells. Int J Food Stud (IJFS) 4:49–60

    Google Scholar 

  61. 61.

    Sirirat D, Jelena P (2010) Bacterial inhibition and antioxidant activity of kefir produced from Thai jasmine rice milk. Biotechnology 9(3):332–337

    CAS  Google Scholar 

  62. 62.

    Marketsandmarkets (2017) Dairy alternatives market by type (soy, almond, coconut, rice, oat, hemp), formulation, application, and region—Global forecast to 2022. Accessed 29 Aug 2018

  63. 63.

    Patisault HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31(4):400–419

    Google Scholar 

  64. 64.

    United Soybean Board (2009) 16th Annual survey, consumer attitudes about nutrition, pp 1–12. Accessed 09 Dec 2017

  65. 65.

    The Food and Drug Administration (FDA) (2017) Food labeling: health claims; soy protein and coronary heart disease. Fed Regist 82(209):31

    Google Scholar 

  66. 66.

    Van Vliet S, Burd NA, van Loon LJ (2015) The skeletal muscle anabolic response to plant-versus animal-based protein consumption1. J Nutr 145(9):1981–1991

    PubMed  Google Scholar 

  67. 67.

    Scholz-Ahrens KE, Schrezenmeir J (2004) Ernährung und Osteoporoseprävention. Ernährungs-Umschau 51(01):22–26

    CAS  Google Scholar 

  68. 68.

    Fairweather-Tait SJ, Johnson A, Eagles J et al (1989) Studies on calcium absorption from milk using a double-label stable isotope technique. Br J Nutr 62(2):379–388

    CAS  PubMed  Google Scholar 

  69. 69.

    Weaver CM, Heaney RP (2006) Food sources, supplements, and bioavailability. In: Weaver CM, Heaney RP (eds) Calcium in human health. Nutrition and health. Humana Press, Totowa

    Google Scholar 

  70. 70.

    Greupner T, Schneider I, Hahn A (2017) Calcium bioavailability from mineral waters with different mineralization in comparison to milk and a supplement. J Am Coll Nutr 36(5):386–390

    CAS  PubMed  Google Scholar 

  71. 71.

    Sheikh MS, Santa Ana CA, Nicar MJ et al (1987) Gastrointestinal absorption of calcium from milk and calcium salts. N Engl J Med 317(9):532–536

    CAS  PubMed  Google Scholar 

  72. 72.

    Smith KT, Heaney RP, Flora L et al (1987) Calcium absorption from a new calcium delivery system (CCM). Calcif Tissue Int 41(6):351–352

    CAS  PubMed  Google Scholar 

  73. 73.

    Scholz-Ahrens KE, Goralczyk R, Rambeck WA et al (1997) Effect of supplementation with milk or CCM enriched orange juice on bone metabolism in dependence on basic diet. In: Proceedings of the society of nutrition physiology (Germany), p 129

  74. 74.

    Sandberg AS (2002) Bioavailability of minerals in legumes. Br J Nutr 88(3):S281–S285

    CAS  PubMed  Google Scholar 

  75. 75.

    Rimbach G, Pallauf J, Moehring J et al (2008) Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability: a literature review. Curr Top Nutraceutical Res 6(3):131–144

    CAS  Google Scholar 

  76. 76.

    Ellis D, Lieb J (2015) Hyperoxaluria and genitourinary disorders in children ingesting almond milk products. J Pediatr 167(5):1155–1158

    PubMed  Google Scholar 

  77. 77.

    Scholz-Ahrens KE (2016) Prebiotics, probiotics, synbiotics and foods with regard to bone metabolism. In: Nutritional influences on bone health. Springer, Cham, pp 153–167

    Google Scholar 

  78. 78.

    González-Vega JC, Walk CL, Stein HH (2015) Effects of microbial phytase on apparent and standardized total tract digestibility of calcium in calcium supplements fed to growing pigs. J Anim Sci 93(5):2255–2264.

    Article  PubMed  Google Scholar 

  79. 79.

    González-Vega JC, Walk CL, Liu Y et al (2014) The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility. Arch Anim Nutr 68(2):126–142

    PubMed  Google Scholar 

  80. 80.

    Schanler RJ, Abrams SA, Garza C (1988) Bioavailability of calcium and phosphorus in human milk fortifiers and formula for very low birth weight infants. J Pediatr 113:95–100

    CAS  PubMed  Google Scholar 

  81. 81.

    Heaney RP, Dowell MS, Rafferty K et al (2000) Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am J Clin Nutr 71:1166–1169

    CAS  PubMed  Google Scholar 

  82. 82.

    Scholz-Ahrens KE (2011) Osteoporose—Prävention durch Ernährung. Praxishandbuch Funct Food 1109(51):1–44

    Google Scholar 

  83. 83.

    Vitoria I (2017) The nutritional limitations of plant-based beverages in infancy and childhood. Nutr Hosp 34(5):1205–1214

    PubMed  Google Scholar 

  84. 84.

    Vanga SK, Raghavan V (2018) How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol 55(1):10–20

    CAS  PubMed  Google Scholar 

  85. 85.

    Flachowsky G, Franke K, Meyer U et al (2014) Influencing factors on iodine content of cow milk. Eur J Nutr 53:351–365

    CAS  PubMed  Google Scholar 

  86. 86.

    Ma W, He X, Braverman L (2016) Iodine content in milk alternatives. Thyroid 26(9):1308–1310

    CAS  PubMed  Google Scholar 

  87. 87.

    Phillips SM, Tang JE, Moore DR (2009) The role of milk-and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr 28(4):343–354

    CAS  PubMed  Google Scholar 

  88. 88.

    Scholz K, Pfeffer E (1978) Ein Beitrag zur Bewertung des Proteins in Krillmehl und Luzernemehlextrakt. Arch Anim Nutr 28(10):641–646

    CAS  Google Scholar 

  89. 89.

    Berkey CS, Colditz GA, Rockett HR et al (2009) Dairy consumption and female height growth: prospective cohort study. Cancer Epidemiol Biomark 18(6):1881–1887

    CAS  Google Scholar 

  90. 90.

    Morency M-E, Birken CS, Lebovic G et al (2017) Association between noncow milk beverage consumption and childhood height. Am J Clin Nutr 106(2):597–602

    CAS  PubMed  Google Scholar 

  91. 91.

    World Health Organization, Regional Office Europe, 12 steps to healthy eating (2019) A healthy lifestyle. Accessed 02 Feb 2019

  92. 92.

    Yu E, Malik VS, Hu FB (2018) Cardiovascular disease prevention by diet modification: JACC health promotion series. J Am Coll Cardiol 72(8):914–926

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Hjartåker A, Laake P, Lund E (2001) Childhood and adult milk consumption and risk of premenopausal breast cancer in a cohort of 48,844 women—the Norwegian women and cancer study. Int J Cancer 93(6):888–893

    PubMed  Google Scholar 

  94. 94.

    Michels KB, Mohllajee AP, Roset-Bahmanyar E et al (2007) Diet and breast cancer: a review of the prospective observational studies. Cancer 109:2712–2749

    CAS  PubMed  Google Scholar 

  95. 95.

    Van Der Pols JC, Bain C, Gunnell D et al (2007) Childhood dairy intake and adult cancer risk: 65-y follow-up of the Boyd Orr cohort. Am J Clin Nutr 86(6):1722–1729

    PubMed  Google Scholar 

  96. 96.

    Murphy N, Norat T, Ferrari P et al (2013) Consumption of dairy products and colorectal cancer in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 8(9):e72715

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Brei C, Weigl J, Schrezenmeir J et al (2017) Milk and dairy products part 7: consumption of dairy products and cancer. Ernährungs Umschau 64(9):M518–M525

    Google Scholar 

  98. 98.

    Aune D, Lau R, Chan DSM et al (2012) Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 23:37–45

    CAS  PubMed  Google Scholar 

  99. 99.

    Aune D, Navarro Rosenblatt DA, Chan DS et al (2015) Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 101(1):87–117

    CAS  PubMed  Google Scholar 

  100. 100.

    Lu W, Chen H, Niu Y et al (2016) Dairy products intake and cancer mortality risk: a meta-analysis of 11 population-based cohort studies. Nutr J 15(1):91

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    World Cancer Research Fund/American Institute for Cancer Research (2018) Diet, nutrition, physical activity and cancer: a global perspective. Continuous Update Project Expert Report 2018

  102. 102.

    Carvalho NF, Kenney RD, Carrington PH et al (2001) Severe nutritional deficiencies in toddlers resulting from health food milk alternatives. Pediatrics 107:E46 (1–7)

    CAS  PubMed  Google Scholar 

  103. 103.

    Liu T, Howard R, Mancini A et al (2001) Kwashiorkor in the United States, fad diets, perceived and true milk allergy, and nutritional ignorance. Arch Dermatol 137:630–636

    CAS  PubMed  Google Scholar 

  104. 104.

    Black RE, Williams SM, Jones IE et al (2002) Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr 76:675–680

    CAS  PubMed  Google Scholar 

  105. 105.

    Le Louer B, Lemale J, Garcette K et al (2014) Severe nutritional deficiencies in young infants with inappropriate plant milk consumption. Arch Pediatr 21(5):483–488

    PubMed  Google Scholar 

  106. 106.

    Gerrard JW, MacKenzie JW, Goluboff N et al (1973) Cow’s milk allergy: prevalence and manifestations in an unselected series of newborns. Acta Paediatr Scand Suppl 234:1–21

    CAS  PubMed  Google Scholar 

  107. 107.

    Mandalari G, Mackie A (2018) Almond allergy: an overview on prevalence, thresholds, regulations and allergen detection. Nutrients 10(11):1706

    PubMed Central  Google Scholar 

  108. 108.

    Ahn KM, Han YS, Nam SY et al (2003) Prevalence of soy protein hypersensitivity in cow’s milk protein-sensitive children in Korea. J Korean Med Sci 18(4):473–477

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Anil M, Demirakca S, Dötsch J et al (1996) Hypocalcemia–hyperphosphatemia due to soy milk feeding in early infancy. Klin Paediatr 208(6):323–326

    CAS  Google Scholar 

  110. 110.

    Straub S, Huckel D, Borte M et al (2006) Hypocalcaemic tetany through feeding with almond milk. Internistische Praxis 46(4):747–752

    Google Scholar 

  111. 111.

    Katz KA, Mahlberg MJ, Honig PJ et al (2005) Rice nightmare: Kwashiorkor in 2 Philadelphia-area infants fed rice dream beverage. J Am Acad Dermatol 52(5 Suppl 1):S69–S72

    PubMed  Google Scholar 

  112. 112.

    Vitoria I (2017) The nutritional limitations of plant-based beverages in infancy and childhood. Nutr Hosp 24 34(5):1205–1214

    PubMed  Google Scholar 

  113. 113.

    Vitoria I, López B, Gómez J, Torres C, Guasp M, Calvo I, Dalmau J (2016) Improper use of a plant-based vitamin C-deficient beverage causes scurvy in an infant. Pediatrics 137(2):e20152781

    PubMed  Google Scholar 

  114. 114.

    Dwyer TJ, Dietz WH, Hass GH et al (1979) Risk of nutritional rickets among vegetarian children. Am J Dis Child 133:134–140

    CAS  PubMed  Google Scholar 

  115. 115.

    Van Staveren WA, Dhuyvetter JH, Bons A et al (1985) Food consumption and height/weight status of Dutch pre-school children on alternative diets. J Am Diet Assoc 85:1579–1584

    PubMed  Google Scholar 

  116. 116.

    Doron D, Hershkop K, Granot E (2001) Nutritional deficits resulting from an almond-based infant diet. Clin Nutr 20(3):259–261

    CAS  PubMed  Google Scholar 

  117. 117.

    Agostoni C, Turck D (2011) Is cow’s milk harmful to a child’s health? J Pediatr Gastroenterol Nutr 53(6):594–600

    CAS  PubMed  Google Scholar 

  118. 118.

    Fewtrell M, Bronsky J, Campoy C et al (2017) Complementary feeding: a position paper by the European society for paediatric gastroenterology, hepatology, and nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr 64(1):119–132

    CAS  PubMed  Google Scholar 

  119. 119.

    Ratzesberger P (2017) Prozess—Tod nach Mangelernährung. Süddeutsche Zeitung 14. Juni 2017.

  120. 120.

    Leung AM, LaMar A, He X et al (2011) Iodine status and thyroid function of boston-area vegetarians and vegans. J Clin Endocrinol Metab 96:E1303–E1307

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Dietitians of Canada and the Canadian Pediatric Society stated (2017) Accessed 1 Mar 2019

  122. 122.

    Golden NH, Abrams SA (2014) Optimizing bone health in children and adolescents. Pediatrics peds-2014

    PubMed  Google Scholar 

  123. 123.

    Schürmann S, Kersting M, Alexy U (2017) Vegetarian diets in children: a systematic review. Eur J Nutr 56(5):1797–1817. 2017 Mar 15)

    CAS  Article  PubMed  Google Scholar 

  124. 124.

    Dagnelie PC, van Dusseldorp M, van Staveren WA, Hautvast JG (1994) Effects of macrobiotic diets on linear growth in infants and children until 10 years of age. Eur J Clin Nutr 48(Suppl 1):S103–S111 (discussion S111–2)

    PubMed  Google Scholar 

  125. 125.

    Richter M, Boeing H, Grünewald-Funk D, Heseker H, Kroke A, Leschik-Bonnet E, Watzl B, for the German Nutrition Society (DGE) (2016) Vegan diet. Position of the German Nutrition Society (DGE). Ernährungs Umschau 63(04):92–102

    Google Scholar 

  126. 126.

    Ambroszkiewicz J, Chełchowska M, Szamotulska K et al (2018) Bone status and adipokine levels in children on vegetarian and omnivorous diets. Clin Nutr. ahead of print)

    Article  PubMed  Google Scholar 

  127. 127.

    Lau EMC, Kwok T, Woo J, Ho SC (1998) Bone mineral density in Chinese elderly female vegetarians, vegans, lacto-vegetarians and omnivores. Eur J Clin Nutr 52(1):60

    CAS  PubMed  Google Scholar 

  128. 128.

    Tong TY, Key TJ, Sobiecki JG, Bradbury KE (2018) Anthropometric and physiologic characteristics in white and British Indian vegetarians and non-vegetarians in the UK Biobank. Am J Clin Nutr 107(6):909–920.

    Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Ho-Pham LT, Vu BQ, Lai TQ, Nguyen ND, Nguyen TV (2012) Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans. Eur J Clin Nutr 66(1):75–82. 2011 Aug 3)

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Sathyapalan T, Manuchehri AM, Thatcher NJ et al (2011) The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: a randomized, double-blind, crossover study. J Clin Endocrinol Metab 96(5):1442–1449. 2011 Feb 16)

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110(Suppl 3):349–353

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Dhonukshe-Rutten RA, Pluijm SM, de Groot LC, Lips P, Smit JH, van Staveren WA (2005) Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res 20(6):921–929

    CAS  PubMed  Google Scholar 

  133. 133.

    Baik HW, Russell RM (1999) Vitamin B12 deficiency in the elderly. Annu Rev Nutr 19(1):357–377

    CAS  Google Scholar 

  134. 134.

    Lindenbaum J, Rosenberg IH, Wilson PW, Stabler SP, Allen RH (1994) Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 60(1):2–11

    CAS  PubMed  Google Scholar 

  135. 135.

    Andrès E, Affenberge S, Vinzio S, Kurtz JE, Noel E, Kaltenbach G, Blicklé JF (2005) Food-cobalamin malabsorption in elderly patients: clinical manifestations and treatment. Am J Med 118(10):1154–1159

    PubMed  Google Scholar 

  136. 136.

    Referenzwerte für die Nährstoffzufuhr der Deutschen-, Österreichischen-und Schweizerischen Gesellschaft für Ernährung (2008) Umschau Verlag

  137. 137.

    European food safety authority (EFSA)(2018) Dietary reference values for nutrients; Summary report. Accessed 02 Feb 2019

  138. 138.

    Watanabe F (2007) Vitamin B 12 sources and bioavailability. Exp Biol Med 232:1266–1274

    CAS  Google Scholar 

  139. 139.

    van Staveren WA, Steijns JM, de Groot LC (2008) Dairy products as essential contributors of (micro-) nutrients in reference food patterns: an outline for elderly people. J Am Coll Nutr 27(6):747S–754S

    PubMed  Google Scholar 

  140. 140.

    Elorinne A-L, Alfthan G, Erlund I, Kivimäki H, Paju A, Salminen I et al (2016) Food and nutrient intake and nutritional status of finnish vegans and non-vegetarians. PLoS One 11(2):e0148235.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Waldmann A, Koschizke JW, Leitzmann C, Hahn A (2004) Dietary iron intake and iron status of German female vegans: results of the German vegan study. Ann Nutr Metab 48(2):103–108 (Epub 2004 Feb 25)

    CAS  PubMed  Google Scholar 

  142. 142.

    Hallberg L, Rossander-Hulthen L, Brune M, Gleerup A (1993) Inhibition of haem-iron absorption in man by calcium. Br J Nutr 69:533–540

    CAS  PubMed  Google Scholar 

  143. 143.

    Kristensen MB, Hels O, Morberg C, Marving J, Bügel S, Tetens I (2005) Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content. Br J Nutr 94(1):78–83

    CAS  Google Scholar 

  144. 144.

    Hallberg L, Brune M, Rossander-Hulthen L (1987) Is there a physiological role of vitamin C in iron absorption? Ann N Y Acad Sci 498(1):324–332

    CAS  PubMed  Google Scholar 

  145. 145.

    Scholz-Ahrens KE, Schaafsma G, Kip P, Elbers F, Boeing H, Schrezenmeir J (2004) Iron-fortified milk can improve iron status in young women with low iron stores. Milk Sci Int 59(5/6):253–257

    CAS  Google Scholar 

  146. 146.

    Van Soest PJ (1994) The nutritional ecology of the ruminant, 2nd edn. Comstock Publishing Associates/ Division of Cornell University Press, Ithaca, p 5

    Google Scholar 

  147. 147.

    Singhal S, Baker RD, Baker SS (2017) A comparison of the nutritional value of cow’s milk and nondairy beverages. J Pediatr Gastroenterol Nutr 64(1):799–805

    CAS  PubMed  Google Scholar 

  148. 148.

    Hu Y, Li M, Piao J, Yang X (2010) Nutritional evaluation of genetically modified rice expressing human lactoferrin gene. J Cereal Sci 52(3):350–355

    CAS  Google Scholar 

  149. 149.

    Rutherfurd SM, Fanning AC, Miller BJ, Moughan PJ (2014) Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats-3. J Nutr 145(2):372–379

    PubMed  Google Scholar 

  150. 150.

    Schmid A, Walther B (2013) Natural vitamin D content in animal products. Adv Nutr 4(4):453–462

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Calvo MS, Whiting SJ, Barton CN (2004) Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr 80(6):1710S–1716S

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Katharina E. Scholz-Ahrens.

Ethics declarations

Conflict of interest

On behalf of all authors the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scholz-Ahrens, K.E., Ahrens, F. & Barth, C.A. Nutritional and health attributes of milk and milk imitations. Eur J Nutr 59, 19–34 (2020).

Download citation


  • Cow’s milk
  • Plant drinks
  • Nutrient bioavailability
  • Human nutrition
  • Health risks