Skip to main content

Advertisement

Log in

Identification of potential human urinary biomarkers for tomato juice intake by mass spectrometry-based metabolomics

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Dietary biomarkers allow the accurate and objective determination of the dietary intake of humans and can thus be valuable for investigating the relation between consumption of foods and biochemical as well as physiological responses. The objective of this study was the identification of potential urinary biomarkers for consumption of tomato juice.

Methods

In the course of a dietary intervention study, the human urine metabolome of a study cohort was compared between a tomato-free diet and after intake of tomato juice by application of an LC-HRMS-based metabolomics approach. The data acquisition was achieved using an orbitrap mass spectrometer, followed by multistage data processing and univariate as well as multivariate statistical analysis to identify discriminating features.

Results

Statistical analysis revealed several unique features detectable after tomato juice intake. The most discriminating markers were putatively identified as hydroxylated and sulfonated metabolites of esculeogenin B, aglycone of the steroidal glycoalkaloid esculeoside B recently found in tomato juice. Furthermore, the β-carboline alkaloids tangutorid E and F and glucuronidated derivatives thereof were identified in urine.

Conclusions

Steroidal glycoalkaloids in tomato juice are cleaved after ingestion, and hydroxylated and sulfonated metabolites of their aglycones might serve as urinary biomarkers for tomato juice intake. Similarly, β-carboline alkaloids and glucuronidated derivatives were identified as potential urinary biomarkers. Both the aglycones of the steroidal alkaloids and the β-carboline alkaloids might exhibit biological activities worth investigating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

br:

Broad

FC:

Fold change

HCD:

Higher-energy collision induced dissociation

HESI:

Heated electrospray ionization

HRMS:

High-resolution mass spectrometry

LC:

Liquid chromatography

MeOH:

Methanol

PCA:

Principal component analysis

References

  1. Thompson FE, Subar AF, Loria CM, Reedy JL, Baranowski T (2010) Need for technological innovation in dietary assessment. J Acad Nutr Diet 110:48–51

    Google Scholar 

  2. Bingham SA (2002) Biomarkers in nutritional epidemiology. Public Health Nutr 5:821–827

    PubMed  Google Scholar 

  3. McCabe-Sellers B (2010) Advancing the art and science of dietary assessment through technology. J Am Diet Assoc 110:52–54

    PubMed  Google Scholar 

  4. Hedrick VE, Dietrich AM, Estabrooks PA, Savla J, Serrano E, Davy BM (2012) Dietary biomarkers: advances, limitations and future directions. Nutr J 11:109

    PubMed  PubMed Central  Google Scholar 

  5. Wishart DS (2008) Metabolomics: application to food science and nutrition research. Trends Food Sci Technol 19:482–493

    CAS  Google Scholar 

  6. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas ME, Kochhar S et al (2010) Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr 92:436–443

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lloyd AJ, Beckmann M, Fave G, Mathers JC, Draper J (2011) Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Br J Nutr 106:812–824

    CAS  PubMed  Google Scholar 

  8. Lang R, Lang T, Bader M, Beusch A, Schlagbauer V, Hofmann T (2017) High-throughput quantitation of proline betaine in foods and suitability as a valid biomarker for citrus consumption. J Agric Food Chem 65:1613–1619

    CAS  PubMed  Google Scholar 

  9. Mennen LI, Sapinho D, Ito H, Bertrais S, Galan P, Hercberg S et al (2006) Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br J Nutr 96:191–198

    CAS  PubMed  Google Scholar 

  10. Saenger T, Hübner F, Humpf HU (2017) Short-term biomarkers of apple consumption. Mol Nutr Food Res 61:1600629

    Google Scholar 

  11. Ito H, Gonthier MP, Manach C, Morand C, Mennen L, Rémésy C et al (2005) Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr 94:500–509

    CAS  PubMed  Google Scholar 

  12. Llorach R, Urpi-Sarda M, Jauregui O, Monagas M, Andres-Lacueva C (2009) An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteom Res 8:5060–5068

    CAS  Google Scholar 

  13. Canene-Adams K, Campbell JK, Zaripheh S, Jeffery EH, Erdman JW (2005) The tomato as a functional food. J Nutr 135:1226–1230

    CAS  PubMed  Google Scholar 

  14. Ghavipour M, Saedisomeolia A, Djalali M, Sotuodeh G, Eshraghyan MR, Moghadam AM et al (2013) Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr 109:2031–2035

    CAS  PubMed  Google Scholar 

  15. Ghavipour M, Sotoudeh G, Ghorbani M (2015) Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clin Nutr 34:805–809

    CAS  PubMed  Google Scholar 

  16. Silaste ML, Alfthan G, Aro A, Kesäniemi YA, Hörkkö S (2007) Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation. Br J Nutr 98:1251–1258

    CAS  PubMed  Google Scholar 

  17. Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA et al (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Iijima Y, Watanabe B, Sasaki R, Takenaka M, Ono H, Sakurai N et al (2013) Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit. Phytochem 95:145–157

    CAS  Google Scholar 

  19. Nohara T, Fujiwara Y, Zhou JR, Urata J, Ikeda T, Murakami K et al (2015) Saponins, esculeosides B-1 and B-2, in tomato juice and sapogenol, esculeogenin B1. Chem Pharm Bull 63:848–850

    CAS  PubMed  Google Scholar 

  20. Cichon MJ, Riedl KM, Wan L, Thomas-Ahner JM, Francis DM, Clinton SK et al (2017) Plasma metabolomics reveals steroidal alkaloids as novel biomarkers of tomato intake in mice. Mol Nutr Food Res 61:1700241

    Google Scholar 

  21. Gika HG, Theodoridis GA, Plumb RS, Wilson ID (2014) Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal 87:12–25

    CAS  PubMed  Google Scholar 

  22. Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC (2008) Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J Chromatogr 871:143–163

    CAS  Google Scholar 

  23. Chambers MC, MacLean B, Burke R, Amode D, Ruderman DL, Neumann S et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform 11:395

    Google Scholar 

  25. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinform 55:14.10.1–14.10.91

    Google Scholar 

  26. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    CAS  PubMed  Google Scholar 

  27. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    CAS  PubMed  Google Scholar 

  28. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Diem S, Herderich M (2001) Reaction of tryptophan with carbohydrates: identification and quantitative determination of novel β-carboline alkaloids in food. J Agric Food Chem 49:2486–2492

    CAS  PubMed  Google Scholar 

  30. Zhao JQ, Wang YM, Yang YL, Zeng Y, Wang QL, Shao Y et al (2017) Isolation and identification of antioxidant and α-glucosidase inhibitory compounds from fruit juice of Nitraria tangutorum. Food Chem 227:93–101

    CAS  PubMed  Google Scholar 

  31. Caprioli G, Cahill M, Logrippo S, James K (2015) Elucidation of the mass fragmentation pathways of tomatidine and β1-hydroxytomatine using orbitrap-mass spectrometry. Nat Prod Commun 10:575–576

    PubMed  Google Scholar 

  32. Levsen K, Schiebel HM, Behnke B, Dötzer R, Dreher W, Elend M (2005) Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview. J Chromatogr A 1067:55–72

    CAS  PubMed  Google Scholar 

  33. Strott CA (2002) Sulfonation and molecular action. Endocr Rev 23:703–732

    CAS  PubMed  Google Scholar 

  34. Leowattana W (2004) DHEAS as a new diagnostic tool. Clin Chim Acta 341:1–15

    CAS  PubMed  Google Scholar 

  35. Fujiwara Y, Takaki A, Uehara Y, Ikeda T, Okawa M, Yamauchi K et al (2004) Tomato steroidal alkaloid glycosides, esculeosides A and B, from ripe fruits. Tetrahedron 60:4915–4920

    CAS  Google Scholar 

  36. Manabe H, Fujiwara Y, Ikeda T, Ono M, Murakami K, Zhou JR et al (2013) Saponins esculeosides B-1 and B-2 in Italian canned tomatoes. Chem Pharm Bull 61:764–767

    CAS  PubMed  Google Scholar 

  37. Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50:5751–5780

    CAS  PubMed  Google Scholar 

  38. Nohara T, Ono M, Ikeda T, Fujiwara Y, El-Aasr M (2010) The tomato saponin, esculeoside A. J Nat Prod 73:1734–1741

    CAS  PubMed  Google Scholar 

  39. Fujiwara Y, Kiyota N, Hori M, Matsushita S, Iijima Y, Aoki K et al. Arterioscler (2007) Esculeogenin A, a new tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-deficient mice by inhibiting ACAT. Thromb Vasc Biol 27:2400–2406

    CAS  Google Scholar 

  40. Fujiwara Y, Kiyota N, Tsurushima K, Yoshitomi M, Horlad H, Ikeda T et al (2012) Tomatidine, a tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-deficient mice by inhibiting Acyl-CoA:cholesterol Acyl-transferase (ACAT). J Agric Food Chem 60:2472–2479

    CAS  PubMed  Google Scholar 

  41. Allen JRF, Holmstedt BR (1980) The simple β-carboline alkaloids. Phytochem 19:1573–1582

    CAS  Google Scholar 

  42. Adachi J, Mizoi Y, Naito T, Ogawa Y, Uetani Y, Ninomiya I (1991) Identification of tetrahydro-β-carboline-3-carboxylic acid in foodstuffs, human urine and human milk. J Nutr 121:646–652

    CAS  PubMed  Google Scholar 

  43. Herraiz T, Galisteo J (2002) Identification and occurrence of the novel alkaloid pentahydroxypentyl-tetrahydro-β-carboline-3-carboxylic acid as a tryptophan glycoconjugate in fruit juices and jams. J Agric Food Chem 50:4690–4695

    CAS  PubMed  Google Scholar 

  44. Cao R, Peng W, Wang Z, Xu A (2007) β-Carboline alkaloids: biochemical and pharmacological functions. Curr Med Chem 14:479–500

    CAS  PubMed  Google Scholar 

  45. Khan H, Patel S, Kamal MA (2017) Pharmacological and toxicological profile of harmane-β-carboline alkaloid: friend or foe. Curr Drug Metab 18:853–857

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Andrea Jansen and Steffen Lürwer for assistance in the course of isolation of the compounds.

Author information

Authors and Affiliations

Authors

Contributions

YH, FH, and HUH were involved in the design of the human study. YH and FH were further responsible for the conduct of the latter. The metabolomics analysis was carried out by FH, RS, and YH, whereas AJ and YH were involved in the isolation of the described compounds. HUH was responsible for the study supervision. All authors contributed to the preparation of the manuscript and gave their approval to the final version.

Corresponding author

Correspondence to Hans-Ulrich Humpf.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hövelmann, Y., Jagels, A., Schmid, R. et al. Identification of potential human urinary biomarkers for tomato juice intake by mass spectrometry-based metabolomics. Eur J Nutr 59, 685–697 (2020). https://doi.org/10.1007/s00394-019-01935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-01935-4

Keywords

Navigation