Impact of a high-protein diet during lactation on milk composition and offspring in a pig model



Early postnatal nutrition not only holds relevance to infant growth, but also determines the risk of developing obesity and chronic diseases such as diabetes type 2 and cardiovascular diseases in adulthood. It is suggested that a high-protein (HP) diet in early childhood can predispose children to obesity. However, data concerning possible alterations in milk composition and the development of the offspring in response to a maternal HP diet are currently not available. To address this question, we conducted a study using pigs as a model organism.


At parturition, sows were assigned to two experimental groups. During lactation, the control group received a diet with a protein content of 16%, whereas the diet of the HP group contained 30% protein. After 28 days of lactation, samples were taken from sows and piglets for the quantification of free amino acids and other metabolites and for histology.


Serum and milk urea showed the most marked differences between the two groups of sows, whereas serum urea concentration in piglets did not differ. Here, we found that the intake of an HP diet changed a series of metabolites in sows, but had only small effects on milk composition and virtually no effects on growth in the offspring. Interestingly, maternal protein intake during lactation shapes the microbiome of the offspring.


From our current study, we conclude that even a very high maternal protein intake throughout lactation has no impact on growth and health parameters of the offspring.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Branched chain amino acid




Crude protein


Free amino acid


High protein


Insulin-like growth factor 1


Least-squares means


Phosphate buffered saline


  1. 1.

    Koletzko B, Brands B, Poston L et al (2012) Early nutrition programming of long-term health. Proc Nutr Soc 71:371–378.

    Article  PubMed  Google Scholar 

  2. 2.

    Arenz S, Rückerl R, Koletzko B et al (2004) Breast-feeding and childhood obesity-a systematic review. Int J Obes Relat Metab Disord 28:1247–1256.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Field CJ (2005) The immunological components of human milk and their effect on immune development in infants. J Nutr 135:1–4.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Michaelsen KF, Skafte L, Badsberg JH et al (1990) Variation in macronutrients in human bank milk: influencing factors and implications for human milk banking. J Pediatr Gastroenterol Nutr 11:229–239

    CAS  Article  Google Scholar 

  5. 5.

    Quinn EA, Largado F, Power M et al (2012) Predictors of breast milk macronutrient composition in Filipino mothers. Am J Hum Biol 24:533–540.

    Article  PubMed  Google Scholar 

  6. 6.

    Tielemans SMAJ, Altorf-van der Kuil W, Engberink MF et al (2013) Intake of total protein, plant protein and animal protein in relation to blood pressure: a meta-analysis of observational and intervention studies. J Hum Hypertens 27:564–571.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    EFSA Panel on Dietetic Products, Nutrition and Allergies (2012) Scientific opinion on dietary reference values for protein. EFSA J 10:2557.

    Article  Google Scholar 

  8. 8.

    Fleddermann M, Demmelmair H, Grote V et al (2017) Role of selected amino acids on plasma IGF-I concentration in infants. Eur J Nutr 56:613–620.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hörnell A, Lagström H, Lande B et al (2013) Protein intake from 0 to 18 years of age and its relation to health: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr Res 57:21083.

    CAS  Article  Google Scholar 

  10. 10.

    Kanitz E, Otten W, Tuchscherer M et al (2012) High and low protein∶ carbohydrate dietary ratios during gestation alter maternal-fetal cortisol regulation in pigs. PLoS One 7:e52748.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Metges CC, Görs S, Lang IS et al (2014) Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs. J Nutr 144:155–163.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Liberato SC, Singh G, Mulholland K (2013) Effects of protein energy supplementation during pregnancy on fetal growth: a review of the literature focusing on contextual factors. Food Nutr Res 57:20499.

    CAS  Article  Google Scholar 

  13. 13.

    Thone-Reineke C, Kalk P, Dorn M et al (2006) High-protein nutrition during pregnancy and lactation programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner. Am J Physiol Regul Integr Comp Physiol 291:R1025–R1030.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Shiell AW, Campbell-Brown M, Haselden S et al (2001) High-meat, low-carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension 38:1282–1288

    CAS  Article  Google Scholar 

  15. 15.

    Koletzko B, Kries R von, Closa R et al (2009) Lower protein in infant formula is associated with lower weight up to age 2 years: a randomized clinical trial. Am J Clin Nutr 89:1836–1845.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Patro-Gołąb B, Zalewski BM, Kouwenhoven SM et al (2016) Protein concentration in milk formula, growth, and later risk of obesity: a systematic review. J Nutr 146:551–564.

    Article  PubMed  Google Scholar 

  17. 17.

    Gruszfeld D, Weber M, Gradowska K et al (2016) Association of early protein intake and pre-peritoneal fat at five years of age: follow-up of a randomized clinical trial. Nutr Metab Cardiovasc Dis 26:824–832.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Socha P, Grote V, Gruszfeld D et al (2011) Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 94:1776S–1784S.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Ketelslegers JM, Maiter D, Maes M et al (1996) Nutritional regulation of the growth hormone and insulin-like growth factor-binding proteins. Horm Res 45:252–257.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Miller E (1987) The pig as a model for human nutrition. Ann Rev Nutr 7:361–382.

    CAS  Article  Google Scholar 

  21. 21.

    National Research Council (2012) Nutrient requirements of swine, Eleventh revised edition. Animal nutrition series. National Academies Press, Washington

  22. 22.

    Bassler R (1976) Die chemische Untersuchung von Futtermitteln, Methodenbuch, 3rd edn. VDLUFA-Verl., Darmstadt

    Google Scholar 

  23. 23.

    Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426

    CAS  Article  Google Scholar 

  24. 24.

    Hoff JL de, Davidson LM, Kritchevsky D (1978) An enzymatic assay for determining free and total cholesterol in tissue. Clin Chem 24:433–435

    PubMed  Google Scholar 

  25. 25.

    BVL (2006) Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB, § 38 TabakerzG, § 28b GenTG: (L). In: Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB, § 38 TabakerzG, § 28b GenTG. Beuth Verlag, Berlin

  26. 26.

    Teerlink T (1994) Derivatization of posttranslationally modified amino acids. J Chromatogr B Biomed Appl 659:185–207

    CAS  Article  Google Scholar 

  27. 27.

    Schuster R (1988) Determination of amino acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid chromatography. J Chromatogr 431:271–284

    CAS  Article  Google Scholar 

  28. 28.

    Kühne H, Hause G, Grundmann SM et al (2016) Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res 36:184–192.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Behr M, Humbeck K, Hause G et al (2010) The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Mol Plant Microbe Interact 23:879–892.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Godfrey K, Robinson S, Barker D et al (1996) Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312:410.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cucó G, Arija V, Iranzo R et al (2006) Association of maternal protein intake before conception and throughout pregnancy with birth weight. Acta Obstet Gynecol Scand 85:413–421.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Elliott RF, Vander Noot GW, Gilbreath RL et al (1971) Effect of dietary protein level on composition changes in sow colostrum and milk. J Anim Sci 32:1128–1137.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Laspiur JP, Burton JL, Weber PSD et al (2009) Dietary protein intake and stage of lactation differentially modulate amino acid transporter mRNA abundance in porcine mammary tissue. J Nutr 139:1677–1684.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hansen AV, Strathe AB, Kebreab E et al (2012) Predicting milk yield and composition in lactating sows: a Bayesian approach. J Anim Sci 90:2285–2298.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Farmer C (2015) The gestating and lactating sow. Wageningen Academic Publishers, Wageningen.

    Google Scholar 

  36. 36.

    Farmer C, Guan X, Trottier NL (2008) Mammary arteriovenous differences of glucose, insulin, prolactin and IGF-I in lactating sows under different protein intake levels. Domest Anim Endocrinol 34:54–62.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Guan X, Pettigrew JE, Ku PK et al (2004) Dietary protein concentration affects plasma arteriovenous difference of amino acids across the porcine mammary gland. J Anim Sci 82:2953–2963.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    King RH, Williams IH (1984) The effect of nutrition on the reproductive performance of first-litter sows 2. Protein and energy intakes during lactation. Anim Prod 38:249–256.

    CAS  Article  Google Scholar 

  39. 39.

    Nie C, He T, Zhang W et al (2018) Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci 19:954.

    CAS  Article  PubMed Central  Google Scholar 

  40. 40.

    Liu Z, Roy NC, Guo Y et al (2016) Human breast milk and infant formulas differentially modify the intestinal microbiota in human infants and host physiology in rats. J Nutr 146:191–199.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alexandra Schutkowski.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schutkowski, A., Kluge, H., Trotz, P. et al. Impact of a high-protein diet during lactation on milk composition and offspring in a pig model. Eur J Nutr 58, 3241–3253 (2019).

Download citation


  • Lactation
  • Pig
  • High protein
  • Milk