Skip to main content
Log in

Effects of products designed to modulate the gut microbiota on hyperlipidaemia

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Fatalities due to heart and cerebrovascular diseases caused by uncontrolled hyperlipidaemia increase every year; on the other hand, lipid-lowering drugs are known to cause side effects. The gut microbiota has been thoroughly investigated by researchers and consumers, because they have unique functional properties and littler side effects. However, the effects of the gut microbiota remain controversial. We conducted a meta-analysis to assess the effects of products designed to modulate the gut microbiota on various hyperlipidaemias.

Methods

We systematically searched PubMed, Embase, Cochrane Library (Central), and Web of Science for randomized controlled trials (published before June 2017, and those only in English) to compare treatment (products designed to modulate the gut microbiota) versus placebo. Our main endpoints were total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in serum. We assessed pooled data using a fixed effects model.

Results

Of 1337 identified studies, 21 were eligible and included in our analysis (n = 1436 participants). The combined estimate of effect size for the impact of products designed to modulate the gut microbiota on serum TC (WMD − 11.07 mg/dL, 95% CI − 13.72 to − 8.43, p < 0.001), LDL-C (WMD − 10.96 mg/dL, 95% CI − 13.37 to − 8.56, p < 0.001), and HDL-C (WMD 0.72 mg/dL, 95% CI 0.06–1.38, p = 0.032) were statistically significant, while no significant effect was found on TG concentrations (WMD − 0.56 mg/dL, 95% CI − 5.59 to 4.47, p = 0.828). Subgroup analysis showed parallel trials, probiotics, and long-term intervention had better effects on lowering blood lipid levels.

Conclusion

Products designed to modulate the gut microbiota results in changes of the plasma lipid concentrations and these changes may protect against cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AHA:

American Heart Association

ATP III:

Adult treatment panel III

BMI:

Body mass index

HDL-C:

High density lipoprotein cholesterol

LDL-C:

Low density lipoprotein cholesterol

NCEP:

National Cholesterol Education Program

PRISMA:

Preferred reporting items for systematic meta-analysis

RCTs:

Randomized controlled trials

SD:

Standard deviation

SEM:

Standard error of the mean

TC:

Total cholesterol

TG:

Triglyceride

WHO:

World Health Organization

WMD:

Weighted mean difference

References

  1. Owens AP, Byrnes JR, Mackman N (2014) Hyperlipidemia, tissue factor, coagulation, and simvastatin. Trends Cardiovasc Med 24(3):95–98. https://doi.org/10.1016/j.tcm.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell S, Roso S, Samuel M, Pladevall-Vila M (2016) Unmet need in the hyperlipidaemia population with high risk of cardiovascular disease: a targeted literature review of observational studies. BMC Cardiovasc Disord 16(1):74–84. https://doi.org/10.1186/s12872-016-0241-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Committee of Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults (2016) Chinese guidelines on prevention and treatment of dyslipidemia in adults. Chin Circ J 31(10):937–953. https://doi.org/10.3969/j.issn.1000-3614.2016.10.001

    Article  Google Scholar 

  4. Obesity CRi (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106(25):3143–3421

    Article  Google Scholar 

  5. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88(2):389–419. https://doi.org/10.1152/physrev.00017.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Liu D, Li Y, Guo L, Cui Y, Zhang X, Li E (2016) Metabolomic analysis of serum from obese adults with hyperlipemia by UHPLC-Q-TOF MS/MS. Biomed Chromatogr 30(1):48–54. https://doi.org/10.1002/bmc.3491

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y-L, Xiao C-H, Hu Z-X, Liu X-S, Liu Z, Zhang W-N, Zhao X-J (2017) Dynamic lipid profile of hyperlipidemia mice. J Chromatogr B 1055–1056:165–171. https://doi.org/10.1016/j.jchromb.2017.04.017

    Article  CAS  Google Scholar 

  8. Taylor BL, Woodfall GE, Sheedy KE, O’Riley ML, Rainbow KA, Bramwell EL, Kellow NJ (2017) Effect of probiotics on metabolic outcomes in pregnant women with gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients 9(5):461–474. https://doi.org/10.3390/nu9050461

    Article  CAS  PubMed Central  Google Scholar 

  9. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589

    Article  CAS  Google Scholar 

  10. Sanders Mary E (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(s2):S58–S61. https://doi.org/10.1086/523341

    Article  PubMed  Google Scholar 

  11. Gourbeyre P, Denery S, Bodinier M (2011) Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol 89(5):685–695. https://doi.org/10.1189/jlb.1109753

    Article  CAS  PubMed  Google Scholar 

  12. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383. https://doi.org/10.1007/s00125-007-0791-0

    Article  CAS  PubMed  Google Scholar 

  13. Nicolucci AC, Reimer RA (2017) Prebiotics as a modulator of gut microbiota in paediatric obesity. Pediatr Obes 12(4):265–273. https://doi.org/10.1111/ijpo.12140

    Article  CAS  PubMed  Google Scholar 

  14. Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16–25. https://doi.org/10.1016/j.jnutbio.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Sun J, Zhong H, Li N, Xu H, Zhu Q, Liu Y (2017) Effect of probiotics on the meat flavour and gut microbiota of chicken. Sci Rep. https://doi.org/10.1038/s41598-017-06677-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Roos NM, Scheuten G, Katan MB (1999) Yoghurt enriched with Lactobacillus acidophilus does not lower blood lipids in healthy men and women with normal to borderline high serum cholesterol levels. Eur J Clin Nutr 53(4):277–280

    Article  Google Scholar 

  17. Lewis SJ, Burmeister S (2005) A double-blind placebo-controlled study of the effects of Lactobacillus acidophilus on plasma lipids. Eur J Clin Nutr 59(6):776–780. https://doi.org/10.1038/sj.ejcn.1602139

    Article  CAS  PubMed  Google Scholar 

  18. Simons LA, Amansec SG, Conway P (2006) Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr Metabol Cardiovasc Dis 16(8):531–535. https://doi.org/10.1016/j.numecd.2005.10.009

    Article  Google Scholar 

  19. Andrade S, Borges N (2009) Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J Dairy Res 76(4):469–474. https://doi.org/10.1017/S0022029909990173

    Article  CAS  PubMed  Google Scholar 

  20. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V, Akbarian-Moghari A (2011) Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci 94(7):3288–3294. https://doi.org/10.3168/jds.2010-4128

    Article  CAS  PubMed  Google Scholar 

  21. Asemi Z, Samimi M, Tabasi Z, Talebian P, Azarbad Z, Hydarzadeh Z, Esmaillzadeh A (2012) Effect of daily consumption of probiotic yoghurt on lipid profiles in pregnant women: a randomized controlled clinical trial. J Mater Fetal Neonatal Med 25 (9):1552–1556. https://doi.org/10.3109/14767058.2011.640372

    Article  CAS  Google Scholar 

  22. Jones ML, Martoni CJ, Parent M, Prakash S (2012) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 107(10):1505–1513. https://doi.org/10.1017/S0007114511004703

    Article  CAS  PubMed  Google Scholar 

  23. Agerholm-Larsen LBM, Grunwald GK, Astrup A (2000) The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur J Clin Nutr 54:856–860

    Article  CAS  Google Scholar 

  24. Guo Z, Liu XM, Zhang QX, Shen Z, Tian FW, Zhang H, Sun ZH, Zhang HP, Chen W (2011) Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutr Metabol Cardiovasc Dis 21(11):844–850. https://doi.org/10.1016/j.numecd.2011.04.008

    Article  CAS  Google Scholar 

  25. Cho YA, Kim J (2015) Effect of probiotics on blood lipid concentrations a meta-analysis of randomized controlled trials. Medicine 94(43):e1714–e1724. https://doi.org/10.1097/md.0000000000001714

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M (2015) Meta-Analysis: Effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One 10(10):e0139795. https://doi.org/10.1371/journal.pone.0139795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puri S, Sharma S, Kurpad A (2016) Potential of probiotics in hypercholesterolemia: a meta-analysis. Indian J Pub Health 60(4):280–286. https://doi.org/10.4103/0019-557x.195859

    Article  Google Scholar 

  28. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  29. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463

    Article  CAS  Google Scholar 

  30. Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E (2016) High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol 7:129–144. https://doi.org/10.3389/fmicb.2016.00129

    Article  PubMed  PubMed Central  Google Scholar 

  31. Larkin TA, Astheimer LB, Price WE (2009) Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur J Clin Nutr 63(2):238–245. https://doi.org/10.1038/sj.ejcn.1602910

    Article  CAS  PubMed  Google Scholar 

  32. Bertolami MC, Faludi AA, Batlouni M (1999) Evaluation of the effects of a new fermented milk product (Gaio) on primary hypercholesterolemia. Eur J Clin Nutr 53(2):97–101

    Article  CAS  Google Scholar 

  33. Kiessling G, Schneider J, Jahreis G (2002) Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr 56(9):843–849. https://doi.org/10.1038/sj.ejcn.1601399

    Article  CAS  PubMed  Google Scholar 

  34. St-Onge MP, Farnworth ER, Savard T, Chabot D, Mafu A, Jones PJ (2002) Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial. BMC Complement Altern Med 2:1–7

    Article  Google Scholar 

  35. Xiao JZ, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A, Iwatsuki K, Kokubo S, Hosono A (2003) Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 86(7):2452–2461

    Article  CAS  Google Scholar 

  36. Giacco R, Clemente G, Luongo D, Lasorella G, Fiume I, Brouns F, Bornet F, Patti L, Cipriano P, Rivellese AA, Riccardi G (2004) Effects of short-chain fructo-oligosaccharides on glucose and lipid metabolism in mild hypercholesterolaemic individuals. Clin Nutr 23(3):331–340. https://doi.org/10.1016/j.clnu.2003.07.010

    Article  CAS  PubMed  Google Scholar 

  37. Hlivak P, Odraska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z (2005) One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratislavské lekárske listy 106(2):67–72

    CAS  PubMed  Google Scholar 

  38. Hatakka K, Mutanen M, Holma R, Saxelin M, Korpela R (2008) Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids. J Am Coll Nutr 27(4):441–447

    Article  CAS  Google Scholar 

  39. Ataie-Jafari A, Larijani B, Alavi Majd H, Tahbaz F (2009) Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metabol 54(1):22–27. https://doi.org/10.1159/000203284

    Article  CAS  Google Scholar 

  40. Ooi LG, Ahmad R, Yuen KH, Liong MT (2010) Lactobacillus acidophilus CHO-220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. J Dairy Sci 93(11):5048–5058. https://doi.org/10.3168/jds.2010-3311

    Article  CAS  PubMed  Google Scholar 

  41. Berthold HK, Schulte DM, Lapointe JF, Lemieux P, Krone W, Gouni-Berthold I (2011) The whey fermentation product malleable protein matrix decreases triglyceride concentrations in subjects with hypercholesterolemia: a randomized placebo-controlled trial1. J Dairy Sci 94(2):589–601. https://doi.org/10.3168/jds.2010-3115

    Article  CAS  PubMed  Google Scholar 

  42. Jones ML, Martoni CJ, Prakash S (2012) Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr 66(11):1234–1241. https://doi.org/10.1038/ejcn.2012.126

    Article  CAS  PubMed  Google Scholar 

  43. Fuentes MC, Lajo T, Carrion JM, Cune J (2013) Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr 109(10):1866–1872. https://doi.org/10.1017/s000711451200373x

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa A, Kadooka Y, Kato K, Shirouchi B, Sato M (2014) Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects. Lipids Health Dis 13:36–44. https://doi.org/10.1186/1476-511x-13-36

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ahn HY, Kim M, Ahn YT, Sim JH, Choi ID, Lee SH, Lee JH (2015) The triglyceride-lowering effect of supplementation with dual probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032: reduction of fasting plasma lysophosphatidylcholines in nondiabetic and hypertriglyceridemic subjects. Nutr Metabol Cardiovasc Dis 25(8):724–733. https://doi.org/10.1016/j.numecd.2015.05.002

    Article  CAS  Google Scholar 

  46. Rerksuppaphol S, Rerksuppaphol L (2015) A randomized double-blind controlled trial of Lactobacillus acidophilus plus bifidobacterium bifidum versus placebo in patients with hypercholesterolemia. J Clin Diagn Res 9(3):KC01–K04. https://doi.org/10.7860/JCDR/2015/11867.5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cavallini DC, Manzoni MS, Bedani R, Roselino MN, Celiberto LS, Vendramini RC, de Valdez G, Abdalla DS, Pinto RA, Rosetto D, Valentini SR, Rossi EA (2016) Probiotic soy product supplemented with isoflavones improves the lipid profile of moderately hypercholesterolemic men: a randomized controlled trial. Nutrients 8(1):52–70. https://doi.org/10.3390/nu8010052

    Article  CAS  Google Scholar 

  48. Fuentes MC, Lajo T, Carrion JM, Cune J (2016) A randomized clinical trial evaluating a proprietary mixture of Lactobacillus plantarum strains for lowering cholesterol. Mediterr J Nutr Metabol 9(2):125–135. https://doi.org/10.3233/MNM-160065

    Article  Google Scholar 

  49. Tan S, Zhao A, Zheng Y, Wang P, Zhang Y (2017) Effects of Lactobacillus paracasei N1115 on intestinal microbiota and serum lipid of dyslipidemias. FASEB J 31 (1 Supplement):45–46

    Google Scholar 

  50. Gilliland SE, Nelson CR, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49(2):377–381

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pereira DI, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68(9):4689–4693

    Article  CAS  Google Scholar 

  52. Liong MT, Shah NP (2005) Bile salt deconjugation and BSH activity of five bifidobacterial strains and their cholesterol co-precipitating properties. Food Res Int 38(2):135–142. https://doi.org/10.1016/j.foodres.2004.08.003

    Article  CAS  Google Scholar 

  53. Tahri K, Grill JP, Schneider F (1997) Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria. Curr Microbiol 34(2):79–84

    Article  CAS  Google Scholar 

  54. Zhao JR, Yang H (2005) Progress in the effect of probiotics on cholesterol and its mechanism. Wei sheng wu xue bao = Acta microbiologica Sinica 45(2):315–319

    CAS  PubMed  Google Scholar 

  55. Huang Y, Zheng Y (2010) The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. Br J Nutr 103(4):473–478. https://doi.org/10.1017/s0007114509991991

    Article  CAS  PubMed  Google Scholar 

  56. Lye H-S, Rahmat-Ali GR, Liong M-T (2010) Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 20(3):169–175. https://doi.org/10.1016/j.idairyj.2009.10.003

    Article  CAS  Google Scholar 

  57. Sterne JA, Egger M, Smith GD (2001) Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ 323(7304):101–105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (81703677). The assistance of the staff is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihong Ge or Changrun Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 KB)

Supplementary material 2 (DOC 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Ma, J., Song, M. et al. Effects of products designed to modulate the gut microbiota on hyperlipidaemia. Eur J Nutr 58, 2713–2729 (2019). https://doi.org/10.1007/s00394-018-1821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1821-z

Keywords

Navigation