Increased bioavailability of curcumin using a novel dispersion technology system (LipiSperse®)

Abstract

Purpose

Curcumin has been shown to deliver protective effects against numerous degenerative conditions associated with high levels of inflammation and oxidative stress. Owing to its poor bioavailability when delivered orally, it is difficult to deliver a high concentration therapeutic dose. LipiSperse® is a novel delivery system that uses dispersion technology to enhance bioavailability of hydrophobic agents. In this study, we investigated the pharmacokinetics of a commercially available curcumin extract, with or without the curcumin-LipiSperse® delivery complex.

Methods

Eighteen healthy male and female volunteers participated in this single equivalent dose, randomised, double-blinded study. Seven of those volunteers further participated in the crossover phase of the trial. Plasma concentrations were determined at baseline and at regular intervals over a 24-h period following 750 mg of curcuminoid ingestion.

Results

In both the parallel and crossover trial, Curcumin with LipiSperse® delivered significantly higher plasma curcuminoid concentrations compared to the raw curcumin product (807 vs 318 ng/mL in the crossover trial).

Conclusions

The novel delivery system LipiSperse® is safe in humans, and demonstrates superior bioavailability for the supply of curcumin when compared to a standard curcumin extract.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Prasad S, Aggarwal BB (2011) Turmeric, the golden spice: from traditional medicine to modern medicine. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects. 2nd edn., CRC Press, Boca Raton

    Google Scholar 

  2. 2.

    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818. https://doi.org/10.1021/mp700113r

    Article  CAS  Google Scholar 

  3. 3.

    Ferrari E, Benassi R, Sacchi S, Pignedoli F, Asti M, Saladini M (2014) Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications. J Inorg Biochem 139:38–48. https://doi.org/10.1016/j.jinorgbio.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28(12):1937–1955. https://doi.org/10.1039/c1np00051a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39(3):283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Tang M, Taghibiglou C (2017) The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 58(4):1003–1016. https://doi.org/10.3233/JAD-170188

    Article  CAS  Google Scholar 

  7. 7.

    Xie L, Li XK, Takahara S (2011) Curcumin has bright prospects for the treatment of multiple sclerosis. Int Immunopharmacol 11(3):323–330. https://doi.org/10.1016/j.intimp.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Miriyala S, Panchatcharam M, Rengarajulu P (2007) Cardioprotective effects of curcumin. Adv Exp Med Biol 595:359–377. https://doi.org/10.1007/978-0-387-46401-5_16

    Article  PubMed  Google Scholar 

  9. 9.

    Sukardi R, Sastroasmoro S, Siregar NC, Djer MM, Suyatna FD, Sadikin M, Ibrahim N, Rahayuningsih SE, Witarto AB (2016) The role of curcumin as an inhibitor of oxidative stress caused by ischaemia re-perfusion injury in tetralogy of Fallot patients undergoing corrective surgery. Cardiol Young 26(3):431–438. https://doi.org/10.1017/S1047951115000360

    Article  PubMed  Google Scholar 

  10. 10.

    Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M, Sahebkar A (2017) Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology 25(1):25–31. https://doi.org/10.1007/s10787-016-0301-4

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35(11):2121–2127. https://doi.org/10.2337/dc12-0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Abidi A, Gupta S, Agarwal M, Bhalla HL, Saluja M (2014) Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J Clin Diagn Res 8(8):HC19–H24. https://doi.org/10.7860/JCDR/2014/9273.4705

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ye M, Zhang J, Zhang J, Miao Q, Yao L, Zhang J (2015) Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett 357(1):196–205. https://doi.org/10.1016/j.canlet.2014.11.028

    Article  CAS  Google Scholar 

  14. 14.

    Ammon HP, Wahl MA (1991) Pharmacology of curcuma longa. Planta Med 57(1):1–7. https://doi.org/10.1055/s-2006-960004

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Wahlstrom B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh) 43(2):86–92

    Article  CAS  Google Scholar 

  16. 16.

    Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27(4):486–494

    CAS  PubMed  Google Scholar 

  17. 17.

    Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S, Jukes R, Williams M, Steward WP, Gescher A (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61(3):1058–1064

    CAS  PubMed  Google Scholar 

  18. 18.

    Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28(8):1765–1773. https://doi.org/10.1093/carcin/bgm123

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, Brenner DE (2008) Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomark Prev 17 (6):1411–1417. https://doi.org/10.1158/1055-9965.EPI-07-2693

    Article  CAS  Google Scholar 

  20. 20.

    Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(4):353–356. https://doi.org/10.1055/s-2006-957450

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Purpura M, Lowery RP, Wilson JM, Mannan H, Munch G, Razmovski-Naumovski V (2017) Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur J Nutr. https://doi.org/10.1007/s00394-016-1376-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Nazari-Vanani R, Moezi L, Heli H (2017) In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin. Biomed Pharmacother 88:715–720. https://doi.org/10.1016/j.biopha.2017.01.102

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, Togni S, Dixon BM (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74(4):664–669. https://doi.org/10.1021/np1007262

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Jager R, Lowery RP, Calvanese AV, Joy JM, Purpura M, Wilson JM (2014) Comparative absorption of curcumin formulations. Nutr J 13:11. https://doi.org/10.1186/1475-2891-13-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S (2017) Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater Sci Eng C Mater Biol Appl 77:1316–1326. https://doi.org/10.1016/j.msec.2017.03.226

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Sasaki H, Sunagawa Y, Takahashi K, Imaizumi A, Fukuda H, Hashimoto T, Wada H, Katanasaka Y, Kakeya H, Fujita M, Hasegawa K, Morimoto T (2011) Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull 34(5):660–665

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Rahimi HR, Nedaeinia R, Sepehri Shamloo A, Nikdoust S, Kazemi Oskuee R (2016) Novel delivery system for natural products: nano-curcumin formulations. Avicenna J Phytomed 6(4):383–398

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Antony B, Merina B, Iyer VS, Judy N, Lennertz K, Joyal S (2008) A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), a novel bioenhanced preparation of curcumin. Indian J Pharm Sci 70(4):445–449. https://doi.org/10.4103/0250-474X.44591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175(3):880–885

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Adiwidjaja J, McLachlan AJ, Boddy AV (2017) Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol. https://doi.org/10.1080/17425255.2017.1360279

    Article  PubMed  Google Scholar 

  31. 31.

    Akazawa N, Choi Y, Miyaki A, Tanabe Y, Sugawara J, Ajisaka R, Maeda S (2012) Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr Res 32(10):795–799. https://doi.org/10.1016/j.nutres.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58(3):516–527. https://doi.org/10.1002/mnfr.201300724

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Meibohm B, Beierle I, Derendorf H (2002) How important are gender differences in pharmacokinetics? Clin Pharmacokinet 41(5):329–342. https://doi.org/10.2165/00003088-200241050-00002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support and all trial products were provided by Pharmako Biotechnologies Pty Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Briskey.

Ethics declarations

Conflict of interest

No author listed on this manuscript has any conflict of interests to declare.

Ethical standards

The manuscript was written through contributions from all authors who have given approval for the final version of the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Briskey, D., Sax, A., Mallard, A.R. et al. Increased bioavailability of curcumin using a novel dispersion technology system (LipiSperse®). Eur J Nutr 58, 2087–2097 (2019). https://doi.org/10.1007/s00394-018-1766-2

Download citation

Keywords

  • Curcumin
  • Curcuminoids
  • Pharmacokinetic
  • Bioavailability
  • LipiSperse®