European Journal of Nutrition

, Volume 58, Issue 4, pp 1735–1745 | Cite as

Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial

  • Marc R. Bomhof
  • Jill A. Parnell
  • Hena R. Ramay
  • Pam Crotty
  • Kevin P. Rioux
  • Chris S. Probert
  • Saumya Jayakumar
  • Maitreyi Raman
  • Raylene A. ReimerEmail author
Original Contribution



In obesity and diabetes the liver is highly susceptible to abnormal uptake and storage of fat. In certain individuals hepatic steatosis predisposes to the development of non-alcoholic steatohepatitis (NASH), a disease marked by hepatic inflammation and fibrosis. Although the precise pathophysiology of NASH is unknown, it is believed that the gut microbiota-liver axis influences the development of this disease. With few treatment strategies available for NASH, exploration of gut microbiota-targeted interventions is warranted. We investigated the therapeutic potential of a prebiotic supplement to improve histological parameters of NASH.


In a placebo-controlled, randomized pilot trial, 14 individuals with liver-biopsy-confirmed NASH [non-alcoholic fatty liver activity score (NAS) ≥ 5] were randomized to receive oligofructose (8 g/day for 12 weeks followed by 16 g/day for 24 weeks) or isocaloric placebo for 9 months. The primary outcome measure was the change in liver biopsy NAS score and the secondary outcomes included changes in body weight, body composition, glucose tolerance, inflammatory markers, and gut microbiota.


Independent of weight loss, oligofructose improved liver steatosis relative to placebo and improved overall NAS score (P = 0.016). Bifidobacterium was enhanced by oligofructose, whereas bacteria within Clostridium cluster XI and I were reduced with oligofructose (P < 0.05). There were no adverse side effects that deterred individuals from consuming oligofructose for treatment of this disease.


Independent of other lifestyle changes, prebiotic supplementation reduced histologically-confirmed steatosis in patients with NASH. Larger follow-up studies are warranted.

Clinical Trial

This trial was registered at as NCT03184376.


Non-alcoholic steatohepatitis Gut microbiota Prebiotic Oligofructose 



The authors would like to thank all of the individuals who volunteered their time to participate and contribute to this study. The authors also thank Matt Workentine, Faculty of Veterinary Medicine, University of Calgary, for his technical assistance with 16S sequencing analysis.

Author contributions

MRB executed the study, collected data, analyzed data, and prepared the manuscript; JAP designed the study and obtained funding; HRR analyzed 16S gut microbiota sequencing data; PC collected data; KPR, SJ, and MR designed the study, collected data, and recruited participants; CSP performed VOC analysis; RAR designed the study, obtained funding and had final responsibility for the study. All authors had access to the study data and reviewed and approved the final manuscript.


This work was supported by a research grant from the Canadian Institutes of Health Research (MOP-136889) and a University of Calgary Seed Grant. MRB was supported by Alberta Innovates Health Solutions (AIHS) and an Honorary Izaak Walton Killam Doctoral Scholarship.

Compliance with ethical standards

Conflict of interest

MRB, JAP, HRR, PC, KPR, CSP, SJ, and MR declare no conflict of interest. RAR previously held a research grant from Beneo-Orafti, Inc., manufacturer of Orafti P95, for a project unrelated to this study.

Supplementary material

394_2018_1721_MOESM1_ESM.docx (437 kb)
Supplementary material 1 (DOCX 436 KB)


  1. 1.
    Rinella ME (2015) Non-alcoholic fatty liver disease. JAMA 313(22):2263–2273. CrossRefGoogle Scholar
  2. 2.
    Yilmaz Y, Younossi ZM (2014) Obesity-associated non-alcoholic fatty liver disease. Clin Liver Dis 18(1):19–31. CrossRefGoogle Scholar
  3. 3.
    Anderson EL, Howe LD, Jones HE, Higgins JP, Lawlor DA, Fraser A (2015) The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PLoS One 10(10):e0140908. CrossRefGoogle Scholar
  4. 4.
    Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, Friedman SL, Diago M, Romero-Gomez M (2015) Weight loss through lifestyle modification significantly reduces features of non-alcoholic steatohepatitis. Gastroenterology 149(2):367–378.e365. CrossRefGoogle Scholar
  5. 5.
    Dudekula A, Rachakonda V, Shaik B, Behari J (2014) Weight loss in non-alcoholic fatty liver disease patients in an ambulatory care setting is largely unsuccessful but correlates with frequency of clinic visits. PLoS One 9(11):e111808. CrossRefGoogle Scholar
  6. 6.
    Tilg H, Moschen AR (2010) Evolution of inflammation in non-alcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52(5):1836–1846. CrossRefGoogle Scholar
  7. 7.
    de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira L, Cesar DE, Moreira APB (2018) Influence of gut microbiota on the development and progression of non-alcoholic steatohepatitis. Eur J Nutr 57(3):861–876. CrossRefGoogle Scholar
  8. 8.
    Moschen AR, Kaser S, Tilg H (2013) Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 24(11):537–545. CrossRefGoogle Scholar
  9. 9.
    Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM (2014) Role of the microbiome in energy regulation and metabolism. Gastroenterology 146(6):1525–1533. CrossRefGoogle Scholar
  10. 10.
    Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, Perlemuter G, Cassard-Doulcier AM, Gerard P (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62(12):1787–1794. CrossRefGoogle Scholar
  11. 11.
    Brandl K, Schnabl B (2017) Intestinal microbiota and non-alcoholic steatohepatitis. Curr Opin Gastroenterol 33(3):128–133. CrossRefGoogle Scholar
  12. 12.
    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502. CrossRefGoogle Scholar
  13. 13.
    Corradini C, Lantano C, Cavazza A (2013) Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest. Anal Bioanal Chem 405(13):4591–4605. CrossRefGoogle Scholar
  14. 14.
    Mokhtari Z, Gibson DL, Hekmatdoost A (2017) Non-alcoholic fatty liver disease, the gut microbiome, and diet. Adv Nutr 8:240–252. CrossRefGoogle Scholar
  15. 15.
    Parnell JA, Raman M, Rioux KP, Reimer RA (2012) The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int 32(5):701–711. CrossRefGoogle Scholar
  16. 16.
    Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8):1112–1121. CrossRefGoogle Scholar
  17. 17.
    Daubioul CA, Horsmans Y, Lambert P, Danse E, Delzenne NM (2005) Effects of oligofructose on glucose and lipid metabolism in patients with non-alcoholic steatohepatitis: results of a pilot study. Eur J Clin Nutr 59(5):723–726. CrossRefGoogle Scholar
  18. 18.
    Kellow NJ, Coughlan MT, Reid CM (2014) Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr 111(7):1147–1161. CrossRefGoogle Scholar
  19. 19.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ, Non-alcoholic Steatohepatitis Clinical Research N (2005) Design and validation of a histological scoring system for non-alcoholic fatty liver disease. Hepatology 41(6):1313–1321. CrossRefGoogle Scholar
  20. 20.
    Bruhwyler J, Carreer F, Demanet E, Jacobs H (2009) Digestive tolerance of inulin-type fructans: a double-blind, placebo-controlled, cross-over, dose-ranging, randomized study in healthy volunteers. Int J Food Sci Nutr 60(2):165–175. CrossRefGoogle Scholar
  21. 21.
    Godin G, Shephard RJ (1985) A simple method to assess exercise behavior in the community. Can J Appl Sport Sci 10(3):141–146Google Scholar
  22. 22.
    Fujii H, Kawada N (2012) Inflammation and fibrogenesis in steatohepatitis. J Gastroenterol 47(3):215–225. CrossRefGoogle Scholar
  23. 23.
    Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21(12):2191–2192CrossRefGoogle Scholar
  24. 24.
    DeFronzo RA, Matsuda M (2010) Reduced time points to calculate the composite index. Diabetes Care 33(7):e93. CrossRefGoogle Scholar
  25. 25.
    Bomhof MR, Paul HA, Geuking MB, Eller LK, Reimer RA (2016) Improvement in adiposity with oligofructose is modified by antibiotics in obese rats. FASEB J 30(8):2720–2732. CrossRefGoogle Scholar
  26. 26.
    Nicolucci AC, Hume MP, Martinez I, Mayengbam S, Walter J, Reimer RA (2017) Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153(3):711–722. CrossRefGoogle Scholar
  27. 27.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217. CrossRefGoogle Scholar
  28. 28.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. CrossRefGoogle Scholar
  29. 29.
    Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, Mastrojeni S, Malaguarnera G, Mistretta A, Li Volti G, Galvano F (2012) Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci 57(2):545–553. CrossRefGoogle Scholar
  30. 30.
    Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A (2014) Synbiotic supplementation in non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr 99(3):535–542. CrossRefGoogle Scholar
  31. 31.
    Aller R, De Luis DA, Izaola O, Conde R, Gonzalez Sagrado M, Primo D, De La Fuente B, Gonzalez J (2011) Effect of a probiotic on liver aminotransferases in non-alcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci 15(9):1090–1095Google Scholar
  32. 32.
    Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale DF, Lenta S, Caropreso M, Vallone G, Meli R (2011) Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Ped Gastroenterol Nutr 52(6):740–743. CrossRefGoogle Scholar
  33. 33.
    Wong VW, Won GL, Chim AM, Chu WC, Yeung DK, Li KC, Chan HL (2013) Treatment of non-alcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol 12(2):256–262Google Scholar
  34. 34.
    Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA (2014) Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity 22(3):763–771.;10.1002/oby.20632 CrossRefGoogle Scholar
  35. 35.
    Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kearns M, Wands JR, Fava JL, Wing RR (2010) Randomized controlled trial testing the effects of weight loss on non-alcoholic steatohepatitis. Hepatology 51(1):121–129. CrossRefGoogle Scholar
  36. 36.
    Morel FB, Dai Q, Ni J, Thomas D, Parnet P, Fanca-Berthon P (2015) Alpha-galacto-oligosaccharides dose-dependently reduce appetite and decrease inflammation in overweight adults. J Nutr 145(9):2052–2059. CrossRefGoogle Scholar
  37. 37.
    Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759. CrossRefGoogle Scholar
  38. 38.
    Daud NM, Ismail NA, Thomas EL, Fitzpatrick JA, Bell JD, Swann JR, Costabile A, Childs CE, Pedersen C, Goldstone AP, Frost GS (2014) The impact of oligofructose on stimulation of gut hormones, appetite regulation and adiposity. Obesity 22(6):1430–1438. CrossRefGoogle Scholar
  39. 39.
    Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S, O’Dea K, Desmond PV, Johnson NA, Wilson AM (2013) The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 59(1):138–143. CrossRefGoogle Scholar
  40. 40.
    Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in non-alcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2):601–609. CrossRefGoogle Scholar
  41. 41.
    Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP (2013) Intestinal microbiota in patients with non-alcoholic fatty liver disease. Hepatology 58(1):120–127. CrossRefGoogle Scholar
  42. 42.
    Kalliomaki M, Carmen Collado M, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87(3):534–538. CrossRefGoogle Scholar
  43. 43.
    Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, Grimaldi A, Capron F, Poynard T, Group LS (2005) Sampling variability of liver biopsy in non-alcoholic fatty liver disease. Gastroenterology 128(7):1898–1906. CrossRefGoogle Scholar
  44. 44.
    Trabulsi J, Schoeller DA (2001) Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am J Physiol Endo Metab 281(5):E891–899. CrossRefGoogle Scholar
  45. 45.
    Helmerhorst HJ, Brage S, Warren J, Besson H, Ekelund U (2012) A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. Int J Behav Nutr Phys Act 9:103. CrossRefGoogle Scholar
  46. 46.
    Kaczmarek JL, Musaad SM, Holscher HD (2017) Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr 106(5):1220–1231. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marc R. Bomhof
    • 1
    • 2
  • Jill A. Parnell
    • 3
  • Hena R. Ramay
    • 4
  • Pam Crotty
    • 5
  • Kevin P. Rioux
    • 5
    • 6
  • Chris S. Probert
    • 7
  • Saumya Jayakumar
    • 5
  • Maitreyi Raman
    • 5
  • Raylene A. Reimer
    • 2
    • 8
    Email author
  1. 1.Department of Kinesiology and Physical EducationUniversity of LethbridgeLethbridgeCanada
  2. 2.Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
  3. 3.Department of Health and Physical EducationMount Royal UniversityCalgaryCanada
  4. 4.International Microbiome Centre, Cumming School of Medicine, Health Sciences CentreUniversity of CalgaryCalgaryCanada
  5. 5.Division of Gastroenterology and Hepatology, Department of MedicineUniversity of CalgaryCalgaryCanada
  6. 6.Immunology and Infectious Diseases, Department of Microbiology1863 Health Sciences CentreCalgaryCanada
  7. 7.Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
  8. 8.Department of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations