Skip to main content
Log in

A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS Lost trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

A common variant of the melatonin receptor 1B (MTNR1B) gene has been related to increased signaling of melatonin, a hormone previously associated with body fatness mainly through effects on energy metabolism. We examined whether the MTNR1B variant affects changes of body fatness and composition in response to a dietary weight loss intervention.

Methods

The MTNR1B rs10830963 variant was genotyped for 722 overweight and obese individuals, who were randomly assigned to one of four diets varying in macronutrient composition. Anthropometric and body composition measurements (DXA scan) were collected at baseline and at 6 and 24 months of follow-up.

Results

Statistically significant interactions were observed between the MTNR1B genotype and low-/high-fat diet on changes in weight, body mass index (BMI), waist circumference (WC) and total body fat (p interaction = 0.01, 0.02, 0.002 and 0.04, respectively), at 6 months of dietary intervention. In the low-fat diet group, increasing number of the sleep disruption-related G allele was significantly associated with a decrease in weight (p = 0.004), BMI (p = 0.005) and WC (p = 0.001). In the high-fat diet group, carrying the G allele was positively associated with changes in body fat (p = 0.03). At 2 years, the associations remained statistically significant for changes in body weight (p = 0.02), BMI (p = 0.02) and WC (p = 0.048) in the low-fat diet group, although the gene–diet interaction became less significant.

Conclusions

The results suggest that carriers of the G allele of the MTNR1B rs10830963 may have a greater improvement in body adiposity and fat distribution when eating a low-fat diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Laermans J, Depoortere I (2016) Chronobesity: role of the circadian system in the obesity epidemic. Obes Rev 17:108–125. https://doi.org/10.1111/obr.12351

    Article  CAS  PubMed  Google Scholar 

  2. Garaulet M, Ordovás JM, Madrid JA (2010) The chronobiology, etiology and pathophysiology of obesity. Int J Obes (Lond) 34:1667–1683. https://doi.org/10.1038/ijo.2010.118

    Article  CAS  Google Scholar 

  3. Qian J, Scheer FAJL. (2016) Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol Metab 27:282–293. https://doi.org/10.1016/j.tem.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scott EM (2015) Circadian clocks, obesity and cardiometabolic function. Diabetes Obes Metab 17:84–89. https://doi.org/10.1111/dom.12518

    Article  PubMed  Google Scholar 

  5. Cipolla-Neto J, Amaral FG, Afeche SC et al (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56:371–381. https://doi.org/10.1111/jpi.12137

    Article  CAS  PubMed  Google Scholar 

  6. Dubocovich ML, Delagrange P, Krause DN et al (2010) Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmocological Rev 62:343–380. https://doi.org/10.1124/pr.110.002832.343

    Article  CAS  Google Scholar 

  7. Gamble KL, Berry R, Frank SJ, Young ME (2014) Circadian clock control of endocrine factors. Nat Rev Endocrinol 10:466–475. https://doi.org/10.1038/nrendo.2014.78

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prokopenko I, Langenberg C, Florez JC et al (2009) Variants in MTNR1B influence fasting glucose levels. Nat Genet 41:77–81. https://doi.org/10.1038/ng.290

    Article  CAS  PubMed  Google Scholar 

  9. Manning AK, Hivert M-F, Scott RA et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44:659–669. https://doi.org/10.1038/ng.2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaulton KJ, Ferreira T, Lee Y et al (2015) Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47:1415–1425. https://doi.org/10.1038/ng.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tuomi T, Nagorny CLF, Singh P et al (2016) Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab 23:1067–1077. https://doi.org/10.1016/j.cmet.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  12. Stancáková A, Kuulasmaa T, Paananen J et al (2009) Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58:2129–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kong X, Zhang X, Xing X et al (2015) The association of type 2 diabetes loci identified in genome-wide association studies with metabolic syndrome and its components in a Chinese population with type 2 diabetes. PLoS One 10:1–21. https://doi.org/10.1371/journal.pone.0143607

    Article  CAS  Google Scholar 

  14. Grotenfelt NE, Wasenius NS, Rönö K et al (2016) Interaction between rs10830963 polymorphism in MTNR1B and lifestyle intervention on occurrence of gestational diabetes. Diabetologia 59:1655–1658. https://doi.org/10.1007/s00125-016-3989-1

    Article  CAS  PubMed  Google Scholar 

  15. Goni L, Cuervo M, Milagro FI, Martínez JA (2014) Gene-gene interplay and gene–diet interactions involving the MTNR1B rs10830963 variant with body weight loss. J Nutrigenet Nutrigenomics 7:232–242. https://doi.org/10.1159/000380951

    Article  CAS  PubMed  Google Scholar 

  16. Szewczyk-Golec K, Woźniak A, Reiter RJ (2015) Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: implications for obesity. J Pineal Res 59:277–291. https://doi.org/10.1111/jpi.12257

    Article  CAS  PubMed  Google Scholar 

  17. Barrenetxe J, Delagrange P, Martínez JA (2004) Physiological and metabolic functions of melatonin. J Physiol Biochem 60:61–72

    Article  CAS  PubMed  Google Scholar 

  18. Sacks FM, Bray GA, Carey VJ et al (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360:859–873. https://doi.org/10.1056/NEJMoa1208410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirzaei K, Xu M, Qi Q et al (2014) Variants in glucose- and circadian rhythm-related genes affect the response of energy expenditure to weight-loss diets: the POUNDS LOST Trial. Am J Clin Nutr 99:392–399. https://doi.org/10.3945/ajcn.113.072066

    Article  CAS  PubMed  Google Scholar 

  20. De Souza RJ, Bray GA, Carey VJ et al (2012) Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr 95:614–625. https://doi.org/10.3945/ajcn.111.026328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Summa KC, Turek FW (2014) Chronobiology and obesity: interactions between circadian rhythms and energy regulation. Adv Nutr 5:312S–312S9S. https://doi.org/10.3945/an.113.005132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308:1043–1045. https://doi.org/10.1126/science.1108750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar Jha P, Challet E, Kalsbeek A (2015) Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol 418:74–88. https://doi.org/10.1016/j.mce.2015.01.024

    Article  CAS  PubMed  Google Scholar 

  24. Wolden-Hanson T, Mitton DR, McCants RL et al (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141:487–497. https://doi.org/10.1210/en.141.2.487

    Article  CAS  PubMed  Google Scholar 

  25. Lane JM, Chang AM, Bjonnes AC et al (2016) Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes 65:1741–1751. https://doi.org/10.2337/db15-0999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oosterman JE, Kalsbeek A, la Fleur SE, Belsham DD (2015) Impact of nutrients on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 308:R337–R350. https://doi.org/10.1152/ajpregu.00322.2014

    Article  CAS  PubMed  Google Scholar 

  27. Yanagihara H, Ando H, Hayashi Y et al (2006) High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int 23:905–914. https://doi.org/10.1080/07420520600827103

    Article  CAS  Google Scholar 

  28. Hsieh M-C, Yang S-C, Tseng H-L et al (2010) Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes (Lond) 34:227–239. https://doi.org/10.1038/ijo.2009.228

    Article  CAS  Google Scholar 

  29. Cano P, Jiménez-Ortega V, Larrad Á et al (2008) Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 33:118–125. https://doi.org/10.1007/s12020-008-9066-x

    Article  CAS  PubMed  Google Scholar 

  30. Cano P, Cardinali DP, Rios-Lugo MJ et al (2009) Effect of a high-fat diet on 24-hour pattern of circulating adipocytokines in rats. Obes (Silver Spring) 17:1866–1871. https://doi.org/10.1038/oby.2009.200

    Article  CAS  Google Scholar 

  31. Cardinali DP, Cano P, Jiménez-Ortega V, Esquifino AI (2011) Melatonin and the metabolic syndrome: physiopathologic and therapeutical implications. Neuroendocrinology 93:133–142. https://doi.org/10.1159/000324699

    Article  CAS  PubMed  Google Scholar 

  32. Zalatan F, Krause JA, Blask DE (2001) Inhibition of isoproterenol-induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor-mediated mechanism. Endocrinology 142:3783–3790. https://doi.org/10.1210/en.142.9.3783

    Article  CAS  PubMed  Google Scholar 

  33. Staiger H, Machicao F, Schäfer SA et al (2008) Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine β-cell function. PLoS One 3:e3962. https://doi.org/10.1371/journal.pone.0003962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Foster GD, Wyatt HR, Hill JO et al (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348:2082–2090. https://doi.org/10.1056/NEJMoa022207

    Article  CAS  PubMed  Google Scholar 

  35. Dansinger ML, Gleason JA, Griffith JL et al (2005) Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for weight loss and heart disease risk reduction: a randomized trial. J Am Med Assoc 293:43–53. https://doi.org/10.1097/00008483-200505000-00012

    Article  CAS  Google Scholar 

  36. Shai I, Schwarzfuchs D, Henkin Y et al (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359:229–241. https://doi.org/10.1056/NEJMoa1208410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all participants of the study for their dedication and contribution to the research. The study is supported by grants from the National Heart, Lung, and Blood Institute (HL-071981, HL-034594, HL-126024), the National Institute of Diabetes and Digestive and Kidney Diseases (DK-091718, DK-100383, DK-078616), the Boston Obesity Nutrition Research Center (DK-46200), and United States–Israel Binational Science Foundation Grant 2011036. LG is a recipient of a pre-doctoral and a mobility grant from the Spanish Ministry of Education, Culture and Sport. YH is a recipient of a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science. LQ was a recipient of the American Heart Association Scientist Development Award (0730094N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Qi.

Ethics declarations

Ethical standards

All procedures of the present study were in accordance with the ethical standards laid down in the 1964 Helsinki declaration and its later amendments. The study was approved by the human subjects committee at each institution and by a data and safety monitoring board appointed by the National Heart, Lung and Blood Institute.

Informed consent

All participants provided written informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goni, L., Sun, D., Heianza, Y. et al. A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS Lost trial. Eur J Nutr 58, 1381–1389 (2019). https://doi.org/10.1007/s00394-018-1660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1660-y

Keywords

Navigation