Skip to main content
Log in

Even effect of milk protein and carbohydrate intake but no further effect of heavy resistance exercise on myofibrillar protein synthesis in older men

European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The responsiveness of older individuals’ skeletal muscle to anabolic strategies may be impaired. However, direct comparisons within the same experimental setting are sparse. The aim of this study was to assess the resting and post-resistance exercise muscle protein synthesis rates in response to two types of milk protein and carbohydrate using a unilateral exercise leg model.

Methods

Twenty-seven older (69 ± 1 year, mean ± SE) men were randomly assigned one of three groups: Whey hydrolysate (WH), caseinate (CAS), or carbohydrate (CHO). By applying stable isotope tracer techniques (L-[15N]phenylalanine), the fasted-rested (basal) myofibrillar fractional synthesis rate (FSR) was measured. Hereafter, FSR was measured in the postprandial phase (0.45 g nutrient/kg LBM) in both legs, one rested (fed-rest) and one exercised (10 × 8 reps at 70% 1RM; fed-exercise). In addition, the activity of p70S6K and venous plasma insulin, phenylalanine, and leucine concentrations were measured.

Results

Insulin, phenylalanine, and leucine concentrations differed markedly after intake of the different study drinks. The basal FSR in WH, CAS, and CHO were 0.027 ± 0.003, 0.030 ± 0.003, and 0.030 ± 0.004%/h, the fed-rested FSR were 0.043 ± 0.004, 0.045 ± 0.003, and 0.035 ± 0.004%/h, and the fed-exercised FSR were 0.041 ± 0.004, 0.043 ± 0.004, and 0.034 ± 0.004%/h, respectively. No significant differences were observed at any state between the groups. Fed-rested- and fed-exercised FSR were higher than basal (P < 0.001). 3 h after exercise and feeding, no significant group differences were detected in the activity of p70S6K.

Conclusions

Milk protein and carbohydrate supplementation stimulate myofibrillar protein synthesis in older men, with no further effect of heavy resistance exercise within 0–3 h post exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19:422–424

    Article  CAS  PubMed  Google Scholar 

  2. Guillet C, Prod’homme M, Balage M, Gachon P, Giraudet C, Morin L, Grizard J, Boirie Y (2004) Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 18:1586–1587

    Article  CAS  PubMed  Google Scholar 

  3. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2005) Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 82:1065–1073

    Article  CAS  PubMed  Google Scholar 

  4. Durham WJ, Casperson SL, Dillon EL, Keske MA, Paddon-Jones D, Sanford AP, Hickner RC, Grady JJ, Sheffield-Moore M (2010) Age-related anabolic resistance after endurance-type exercise in healthy humans. FASEB J 24:4117–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle 1:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ (2009) Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587:211–217

    Article  CAS  PubMed  Google Scholar 

  7. Phillips BE, Hill DS, Atherton PJ (2012) Regulation of muscle protein synthesis in humans. Curr Opin Clin Nutr Metab Care 15:58–63

    Article  CAS  PubMed  Google Scholar 

  8. Rennie MJ (2009) Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl Physiol Nutr Metab 34:377–381

    Article  CAS  PubMed  Google Scholar 

  9. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel J-P, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morley JE, Abbatecola AM, Argiles JM et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shad BJ, Thompson JL, Breen L (2016) Does the muscle protein synthetic response to exercise and amino acid-based nutrition diminish with advancing age? A systematic review. Am J Physiol Endocrinol Metab 311:E803–E817

    Article  PubMed  Google Scholar 

  12. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballèvre O, Beaufrère B (2001) The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab 280:E340–E348

    Article  CAS  PubMed  Google Scholar 

  13. Boirie Y, Dangin M, Gachon P, Vasson M-P, Maubois J-L, Beaufrère B (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA 94:14930–14935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78:250–258

    Article  CAS  PubMed  Google Scholar 

  15. Burd NA, Yang Y, Moore DR, Tang JE, Tarnopolsky MA, Phillips SM (2012) Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr 108:958–962

    Article  CAS  PubMed  Google Scholar 

  16. Pennings B, Boirie Y, Senden JMG, Gijsen AP, Kuipers H, van Loon LJC (2011) Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 93:997–1005

    Article  CAS  PubMed  Google Scholar 

  17. Gorissen SHM, Horstman AMH, Franssen R, Crombag JJR, Langer H, Bierau J, Respondek F, van Loon LJC (2016) Ingestion of wheat protein increases in vivo muscle protein synthesis rates in healthy older men in a randomized trial. J Nutr 146:1651–1659

    Article  CAS  PubMed  Google Scholar 

  18. Dideriksen KJ, Reitelseder S, Petersen SG, Hjort M, Helmark IC, Kjaer M, Holm L (2011) Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals. Scand J Med Sci Sports 21:e372–e383

    Article  CAS  PubMed  Google Scholar 

  19. Soop M, Nehra V, Henderson GC, Boirie Y, Ford GC, Nair KS (2012) Coingestion of whey protein and casein in a mixed meal: demonstration of a more sustained anabolic effect of casein. Am J Physiol Endocrinol Metab 303:E152–E162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mitchell WK, Phillips BE, Williams JP, Rankin D, Lund JN, Wilkinson DJ, Smith K, Atherton PJ (2015) The impact of delivery profile of essential amino acids upon skeletal muscle protein synthesis in older men: clinical efficacy of pulse vs. bolus supply. Am J Physiol Endocrinol Metab 309:E450–E457

    Article  CAS  PubMed  Google Scholar 

  21. Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, Rasmussen BB, Volpi E (2012) A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr 95:1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dideriksen K, Reitelseder S, Malmgaard-Clausen NM, Bechshoeft R, Petersen RK, Mikkelsen UR, Holm L (2016) No effect of anti-inflammatory medication on postprandial and postexercise muscle protein synthesis in elderly men with slightly elevated systemic inflammation. Exp Gerontol 83:120–129

    Article  CAS  PubMed  Google Scholar 

  23. Agergaard J, Bülow J, Jensen JK, Reitelseder S, Drummond MJ, Schjerling P, Scheike T, Serena A, Holm L (2017) Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men. Am J Physiol Endocrinol Metab 312:E326–E338

    Article  PubMed  Google Scholar 

  24. Bülow J, Agergaard J, Kjaer M, Holm L, Reitelseder S (2016) No additional effect of different types of physical activity on 10-hour muscle protein synthesis in elderly men on a controlled energy- and protein-sufficient diet. Exp Gerontol 79:16–25

    Article  CAS  PubMed  Google Scholar 

  25. Holm L, Reitelseder S, Dideriksen K, Nielsen RH, Bülow J, Kjaer M (2014) The single-biopsy approach in determining protein synthesis in human slow-turning-over tissue: use of flood-primed, continuous infusion of amino acid tracers. Am J Physiol Endocrinol Metab 306:E1330–E1339

    Article  CAS  PubMed  Google Scholar 

  26. Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB, Frystyk J, Flyvbjerg A, Schjerling P, van Hall G, Kjaer M, Holm L (2011) Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab 300:E231–E242

    Article  CAS  PubMed  Google Scholar 

  27. Wolfe RR, Chinkes DL (2005) Isotope tracers in metabolic research: principles and practice of kinetic analysis, 2nd edn. John Wiley, Hoboken

    Google Scholar 

  28. Reidy PT, Rasmussen BB (2016) Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. J Nutr 146:155–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koopman R, Crombach N, Gijsen AP, Walrand S, Fauquant J, Kies AK, Lemosquet S, Saris WHM, Boirie Y, van Loon LJC (2009) Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am J Clin Nutr 90:106–115

    Article  CAS  PubMed  Google Scholar 

  30. Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591:2319–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB (2007) Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol 582:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR (2004) Ingestion of casein and whey prosteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc 36:2073–2081

    Article  CAS  PubMed  Google Scholar 

  33. Groen BBL, Res PT, Pennings B, Hertle E, Senden JMG, Saris WHM, van Loon LJC (2012) Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Physiol Endocrinol Metab 302:E52–E60

    Article  CAS  PubMed  Google Scholar 

  34. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107:987–992

    Article  CAS  PubMed  Google Scholar 

  35. Wilkinson SB, Tarnopolsky MA, MacDonald MJ, MacDonald JR, Armstron D, Phillips SM (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85:1031–1040

    Article  CAS  PubMed  Google Scholar 

  36. Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJC (2015) Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr 102:828–836

    Article  CAS  PubMed  Google Scholar 

  37. Baillie AGS, Garlick PJ (1991) Responses of protein synthesis in different skeletal muscles to fasting and insulin in rats. Am J Physiol Endocrinol Metab 260:E891–E896

    Article  CAS  Google Scholar 

  38. Morrison PJ, Hara D, Ding Z, Ivy JL (2008) Adding protein to a carbohydrate supplement provided after endurance exercise enhances 4E-BP1 and RPS6 signaling in skeletal muscle. J Appl Physiol 104:1029–1036

    Article  CAS  PubMed  Google Scholar 

  39. Biolo G, Fleming RYD, Wolfe RR (1995) Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95:811–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drummond MJ, Bell JA, Fujita S, Dreyer HC, Glynn EL, Volpi E, Rasmussen BB (2008) Amino acids are necessary for the insulin-induced activation of mTOR/S6K1 signaling and protein synthesis in healthy and insulin resistant human skeletal muscle. Clin Nutr 27:447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biolo G, Williams BD, Fleming RYD, Wolfe RR (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48:949–957

    Article  CAS  PubMed  Google Scholar 

  42. Koopman R, Wagenmakers AJM, Manders RJF, Zorenc AHG, Senden JMG, Gorselink M, Keizer HA, van Loon LJC (2005) Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab 288:E645–E653

    Article  CAS  PubMed  Google Scholar 

  43. Tang JE, Manolakos JJ, Kujbida GW, Lysecki PJ, Moore DR, Phillips SM (2007) Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men. Appl Physiol Nutr Metab 32:1132–1138

    Article  CAS  PubMed  Google Scholar 

  44. Beelen M, Koopman R, Gijsen AP, Vandereyt H, Kies AK, Kuipers H, Saris WHM, van Loon LJC (2008) Protein coingestion stimulates muscle protein synthesis during resistance-type exercise. Am J Physiol Endocrinol Metab 295:E70–E77

    Article  CAS  PubMed  Google Scholar 

  45. Rahbek SK, Farup J, Møller AB, Vendelbo MH, Holm L, Jessen N, Vissing K (2014) Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids 46:2377–2392

    Article  CAS  PubMed  Google Scholar 

  46. Howarth KR, Moreau NA, Phillips SM, Gibala MJ (2009) Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol 106:1394–1402

    Article  CAS  PubMed  Google Scholar 

  47. Koopman R, Verdijk L, Manders RJF, Gijsen AP, Gorselink M, Pijpers E, Wagenmakers AJM, van Loon LJC (2006) Co-ingestion of protein and leucine stimulates muscle protein synthesis rates to the same extent in young and elderly lean men. Am J Clin Nutr 84:623–632

    Article  CAS  PubMed  Google Scholar 

  48. Børsheim E, Aarsland A, Wolfe RR (2004) Effect of an amino acid, protein, and carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sport Nutr Exerc Metab 14:255–271

    Article  PubMed  Google Scholar 

  49. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR (2003) Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc 35:449–455

    Article  CAS  PubMed  Google Scholar 

  50. Roy BD, Fowles JR, Hill R, Tarnopolsky MA (2000) Macronutrient intake and whole body protein metabolism following resistance exercise. Med Sci Sports Exerc 32:1412–1418

    Article  CAS  PubMed  Google Scholar 

  51. Chanet A, Verlaan S, Salles J, Giraudet C, Patrac V, Pidou V, Pouyet C, Hafnaoui N, Blot A, Cano N, Farigon N, Bongers A, Jourdan M, Luiking Y, Walrand S, Boirie Y (2017) Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink enhances postprandial muscle protein synthesis and muscle mass in healthy older men. J Nutr 147:2262–2271

    Article  CAS  PubMed  Google Scholar 

  52. Pennings B, Groen B, de Lange A, Gijsen AP, Zorenc AH, Senden JMG, van Loon LJC (2012) Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am J Physiol Endocrinol Metab 302:E992–E999

    Article  CAS  PubMed  Google Scholar 

  53. Pennings B, Koopman R, Beelen M, Senden JMG, Saris WHM, van Loon LJC (2011) Exercising before protein intake allows for greater use of dietary protein-derived amino acids for de novo muscle protein synthesis in both young and elderly men. Am J Clin Nutr 93:322–331

    Article  CAS  PubMed  Google Scholar 

  54. Symons TB, Sheffield-Moore M, Mamerow MM, Wolfe RR, Paddon-Jones D (2011) The anabolic response to resistance exercise and a protein-rich meal is not diminished by age. J Nutr Health Aging 15:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Symons TB, Sheffield-Moore M, Wolfe RR, Paddon-Jones D (2009) A moderate serving of high-quality protein maximally stimulates skeletal muscle protein synthesis in young and elderly subjects. J Am Diet Assoc 109:1582–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Symons TB, Schutzler SE, Cocke TL, Chinkes DL, Wolfe RR, Paddon-Jones D (2007) Aging does not impair the anabolic response to a protein-rich meal. Am J Clin Nutr 86:451–456

    Article  CAS  PubMed  Google Scholar 

  57. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, Phillips SM (2015) Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 70:57–62

    Article  CAS  PubMed  Google Scholar 

  58. Drummond MJ, Rasmussen BB (2008) Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 11:222–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Churchward-Venne TA, Burd NA, Mitchell CJ, West DWD, Philp A, Marcotte GR, Baker SK, Baar K, Phillips SM (2012) Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol 590:2751–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Churchward-Venne TA, Breen L, Di Donato DM, Hector AJ, Mitchell CJ, Moore DR, Stellingwerff T, Breuille D, Offord EA, Baker SK, Phillips SM (2014) Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr 99:276–286

    Article  CAS  PubMed  Google Scholar 

  61. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291:E381–E387

    Article  CAS  PubMed  Google Scholar 

  62. Koopman R, Verdijk LB, Beelen M, Gorselink M, Kruseman AN, Wagenmakers AJM, Kuipers H, van Loon LJC (2008) Co-ingestion of leucine with protein does not further augment post-exercise muscle protein synthesis rates in elderly men. Br J Nutr 99:571–580

    Article  CAS  PubMed  Google Scholar 

  63. Phillips SM (2014) A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med 44:S71–S77

    Article  PubMed  Google Scholar 

  64. Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, Sheffield-Moore M, Volpi E, Rasmussen BB (2008) Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 104:1452–1461

    Article  CAS  PubMed  Google Scholar 

  65. Sheffield-Moore M, Yeckel CW, Volpi E, Wolf SE, Morio B, Chinkes DL, Paddon-Jones D, Wolfe RR (2004) Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab 287:E513–E522

    Article  CAS  PubMed  Google Scholar 

  66. Bechshoeft R, Dideriksen KJ, Reitelseder S, Scheike T, Kjaer M, Holm L (2013) The anabolic potential of dietary protein intake on skeletal muscle is prolonged by prior light-load exercise. Clin Nutr 32:236–244

    Article  CAS  PubMed  Google Scholar 

  67. Burd NA, West DWD, Moore DR, Atherton PJ, Staples AW, Prior T, Tang JE, Rennie MJ, Baker SK, Phillips SM (2011) Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr 141:568–573

    Article  CAS  PubMed  Google Scholar 

  68. Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, Kjaer M (2010) Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. Am J Physiol Endocrinol Metab 298:E257–E269

    Article  CAS  PubMed  Google Scholar 

  69. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM (2009) Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol 587:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our voluntary participants for their time and effort, and Ann-Marie Sedstrøm and Ann-Christina Reimann for technical assistance and analyses. Arla Foods Ingredients P/S supported this work.

Author information

Authors and Affiliations

Authors

Contributions

SR, KD, JA, NMM-C, RLB conducted the experimental work; SR, KD, JA, RKP, and LH analysed and interpreted data; SR, KD, AS, URM, and LH designed study; SR drafted the manuscript; all authors edited and revised the manuscript. All authors approved the final content and this version of the manuscript.

Corresponding author

Correspondence to Søren Reitelseder.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise. Anja Serena is employed at Arla Foods amba, and Ulla R. Mikkelsen is employed at Arla Foods Ingredients P/S.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1583 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reitelseder, S., Dideriksen, K., Agergaard, J. et al. Even effect of milk protein and carbohydrate intake but no further effect of heavy resistance exercise on myofibrillar protein synthesis in older men. Eur J Nutr 58, 583–595 (2019). https://doi.org/10.1007/s00394-018-1641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1641-1

Keywords

Navigation