Skip to main content

Advertisement

Log in

Cognitive impairment is associated with elevated serum homocysteine levels among older adults

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to examine the associations between the risk of cognitive impairment and the serum levels of folate, vitamin B12, and homocysteine (Hcy).

Methods

Subjects were persons aged 60–79 years who participated in the Yangpyeong Cohort study between 2011 and 2012. Cognitive impairment and normal subjects consisted of 100 pairs of old adults matched by age, sex, and education levels. Cognitive function was evaluated with the Korean version of the Mini-Mental State Examination for Dementia Screening (MMSE-DS). Pearson’s partial correlation coefficients and conditional multiple logistic regression analysis were applied to determine the associations between cognitive function and the serum levels of folate, vitamin B12, and Hcy.

Results

Compared with the matched normal group, the cognitive impairment group had higher proportions of folate deficiency (< 3 ng/mL) and hyperhomocysteinemia (≥ 15 µmol/L). Serum Hcy concentrations were inversely associated with serum folate (r = − 0.234, p = 0.001) and MMSE-DS score (r = − 0.150, p = 0.037) after adjusting for age, sex, and education. The high Hcy group showed a higher prevalence of cognitive impairment (4th vs. 1st quartile, OR 3.30, 95% CI 1.12–9.72, p for trend = 0.014) after adjusting for exercise.

Conclusions

The present findings suggest a putative protective role of high serum folate and normal Hcy against cognitive impairment among older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cho M, Kim K, Kim M, Kim M, Kim S, Kim J (2008) Nationwide study on the prevalence of dementia in Korean elders. Seoul: Seoul National University Hospital. Ministry of Health, Welfare, and Family Affairs 227

  2. Kim G, Kim H, Kim KN, Son JI, Kim SY, Tamura T, Chang N (2013) Relationship of cognitive function with B vitamin status, homocysteine, and tissue factor pathway inhibitor in cognitively impaired elderly: a cross-sectional survey. J Alzheimer’s Dis 33:853–862

    Article  CAS  Google Scholar 

  3. Mitchell AJ, Shiri-Feshki M (2009) Rate of progression of mild cognitive impairment to dementia—meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand 119:252–265

    Article  CAS  Google Scholar 

  4. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1133–1142

    Article  CAS  PubMed  Google Scholar 

  5. Koike T, Kuzuya M, Kanda S, Okada K, Izawa S, Enoki H, Iguchi A (2008) Raised homocysteine and low folate and vitamin B-12 concentrations predict cognitive decline in community-dwelling older Japanese adults. Clin Nutr 27:865–871

    Article  CAS  PubMed  Google Scholar 

  6. Duthie SJ, Whalley LJ, Collins AR, Leaper S, Berger K, Deary IJ (2002) Homocysteine, B vitamin status, and cognitive function in the elderly. Am J Clin Nutr 75:908–913

    Article  CAS  PubMed  Google Scholar 

  7. Sachdev PS (2005) Homocysteine and brain atrophy. Prog Neuro-Psychopharmacol Biol Psychiatry 29:1152–1161

    Article  CAS  Google Scholar 

  8. Lehmann M, Gottfries C, Regland B (1999) Identification of cognitive impairment in the elderly: homocysteine is an early marker. Dement Geriatr Cogn Disord 10:12–20

    Article  CAS  PubMed  Google Scholar 

  9. Willett WC (1998) Nutritional epidemiology. Oxford University Press, New York

    Book  Google Scholar 

  10. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  11. Kim TH, Jhoo JH, Park JH, Kim JL, Ryu SH, Moon SW, Choo IH, Lee DW, Yoon JC, Do YJ (2010) Korean version of mini mental status examination for dementia screening and its’ short form. Psychiatry Invest 7:102–108

    Article  Google Scholar 

  12. Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43:2412–2414

    Article  CAS  Google Scholar 

  13. Han JW, Kim TH, Jhoo JH, Park JH, Kim JL, Ryu SH, Moon SW, Choo IH, Lee DW, Yoon JC (2010) A normative study of the Mini-Mental State Examination for Dementia Screening (MMSE-DS) and its short form (SMMSE-DS) in the Korean elderly. J Korean Geriatr Psychiatry 14:27–37

    Google Scholar 

  14. World Health Organization (1968) Nutritional anaemias: report of a WHO scientific group [meeting held in Geneva from 13 to 17 March 1967]

  15. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH (1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 39:1764–1779

    CAS  PubMed  Google Scholar 

  16. Wahlin Å, Hill RD, Winblad B, Bäckman L (1996) Effects of serum vitamin B12 and folate status on episodic memory performance in very old age: A population-based study. Psychol Aging 11:487

    Article  CAS  PubMed  Google Scholar 

  17. Ramos MI, Allen LH, Mungas DM, Jagust WJ, Haan MN, Green R, Miller JW (2005) Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr 82:1346–1352

    Article  CAS  PubMed  Google Scholar 

  18. Finkelstein J (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157:S40-S44

    Article  Google Scholar 

  19. Vogel T, Dali-Youcef N, Kaltenbach G, Andres E (2009) Homocysteine, vitamin B12, folate and cognitive functions: a systematic and critical review of the literature. Int J Clin Pract 63:1061–1067

    Article  CAS  PubMed  Google Scholar 

  20. Homocysteine Lowering Trialists’ Collaboration (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82:806–812

    Article  Google Scholar 

  21. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, Verhoef P (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369:208–216

    Article  CAS  PubMed  Google Scholar 

  22. Grieve A, Butcher S, Griffiths R (1992) Synaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity. J Neurosci Res 32:60–68

    Article  CAS  PubMed  Google Scholar 

  23. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  24. Ravaglia G, Forti P, Maioli F, Vettori C, Grossi G, Bargossi AM, Caldarera M, Franceschi C, Facchini A, Mariani E (2001) Elevated plasma homocysteine levels in centenarians are not associated with cognitive impairment. Mech Ageing Dev 121:251–261

    Article  Google Scholar 

  25. Morris MS (2003) Homocysteine and Alzheimer’s disease. Lancet Neurol 2:425–428

    Article  CAS  PubMed  Google Scholar 

  26. Stewart R, Asonganyi B, Sherwood R (2002) Plasma Homocysteine and Cognitive Impairment in an Older British African-Caribbean Population. J Am Geriatr Soc 50:1227–1232

    Article  PubMed  Google Scholar 

  27. De Luis D, Fernandez N, Arranz M, Aller R, Izaola O (2002) Total homocysteine and cognitive deterioration in people with type 2 diabetes. Diabetes Res Clin Pract 55:185–190

    Article  PubMed  Google Scholar 

  28. Sachdev PS, Valenzuela MJ, Brodaty H, Wang XL, Looi J, Lorentz L, Howard L, Jones M, Zagami AS, Gillies D, Wilcken DE (2003) Homocysteine as a risk factor for cognitive impairment in stroke patients. Dement Geriatr Cogn Disord 15:155–162

    Article  CAS  PubMed  Google Scholar 

  29. Prins ND, Den Heijer T, Hofman A, Koudstaal PJ, Jolles J, Clarke R, Breteler MM, Rotterdam Scan Study (2002) Homocysteine and cognitive function in the elderly: the Rotterdam Scan study. Neurology 59:1375–1380

    Article  CAS  PubMed  Google Scholar 

  30. Kado D, Selhub J, Seeman T (2001) Plasma total homocysteine levels and cognitive function in older high functioning adults: Macarthur Studies of Successful Aging. J Am Geriatr Soc 49:S13–S13

    Google Scholar 

  31. Mendonca N, Granic A, Mathers JC, Martin-Ruiz C, Wesnes KA, Seal CJ, Jagger C, Hill TR (2017) One-carbon metabolism biomarkers and cognitive decline in the very old: the Newcastle 85+ study. J Am Med Dir Assoc 17:1.e1–1.e9

    Google Scholar 

  32. McCaddon A, Hudson P, Davies G, Hughes A, Williams JH, Wilkinson C (2001) Homocysteine and cognitive decline in healthy elderly. Dement Geriatr Cogn Disord 12:309–313

    Article  CAS  PubMed  Google Scholar 

  33. Cheng D, Kong H, Pang W, Yang H, Lu H, Huang C, Jiang Y (2016) B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia. Nutr Neurosci 19:461–466

    Article  CAS  PubMed  Google Scholar 

  34. Clarke R, Bennett D, Parish S et al (2014) Effects of homocysteine with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr 100:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Leary F, Allman-Farinelli M, Samman S (2012) Vitamin B12 status, cognitive decline and dementia: a systematic review of prospective cohort studies. Br J Nutr 108:1948–1961

    Article  CAS  PubMed  Google Scholar 

  36. Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC (2011) Physical exercise as a preventive or disease-modifying treatment of dementia brain aging. Mayo Clin Proc 86:876–884

    Article  PubMed  PubMed Central  Google Scholar 

  37. Terry R, Katzman R (2001) Life span and synapses: will there be a primary senile dementia? Neurobiol Aging 22:347–348

    Article  CAS  PubMed  Google Scholar 

  38. Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    Article  CAS  PubMed  Google Scholar 

  39. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950

    Article  CAS  PubMed  Google Scholar 

  40. Zigova T, Pencea V, Wiegand SJ, Luskin MB (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 11:234–245

    Article  CAS  PubMed  Google Scholar 

  41. Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20:2896–2903

    Article  CAS  PubMed  Google Scholar 

  42. Lee JH, Lee KU, Lee DY, Kim KW, Jhoo JH, Kim JH, Lee KH, Kim SY, Han SH, Woo JI (2002) Development of the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet (CERAD-K): clinical and neuropsychological assessment batteries. J Gerontol B 57:P47–P53

    Article  Google Scholar 

  43. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833

    Article  CAS  PubMed  Google Scholar 

  44. Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    Article  CAS  PubMed  Google Scholar 

  45. Ding Y, Li J, Zhou Y, Rafols JA, Clark JC, Ding Y (2006) Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res 3:15–23

    Article  CAS  PubMed  Google Scholar 

  46. Cotman CW, Berchtold NC, Christie L (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472

    Article  CAS  Google Scholar 

  47. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    Article  PubMed  Google Scholar 

  48. Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27:1505–1513

    Article  PubMed  Google Scholar 

  49. Smith AD, Smith SM, De Jager CA, Whitbread P, Johnston C, Agacinski G, Oulhaj A, Bradley KM, Jacoby R, Refsum H (2010) Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS ONE 5:e12244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A 61:1166–1170

    Article  Google Scholar 

  51. Statistics Korea (2010) Population by sex, age and educational attainment (6 years old and over). http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parmTabId=M_01_01#SubCont. Accessed 19 May 2016

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2012R1A1A1041792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Jung Yang.

Ethics declarations

Conflict of interest

The corresponding authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Choi, B.Y., Nam, J.H. et al. Cognitive impairment is associated with elevated serum homocysteine levels among older adults. Eur J Nutr 58, 399–408 (2019). https://doi.org/10.1007/s00394-017-1604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1604-y

Keywords

Navigation