Skip to main content
Log in

High doses of folic acid in the periconceptional period and risk of low weight for gestational age at birth in a population based cohort study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

We investigated the association between maternal use of folic acid (FA) during pregnancy and child anthropometric measures at birth.

Methods

We included 2302 mother–child pairs from a population-based birth cohort in Spain (INMA Project). FA dosages at first and third trimester of pregnancy were assessed using a specific battery questionnaire and were categorized in non-user, < 1000, 1000–4999, and ≥ 5000 µg/day. Anthropometric measures at birth (weight in grams, length and head circumference in centimetres) were obtained from medical records. Small for gestational age according to weight (SGA-w), length (SGA-l) and head circumference (SGA-hc) were defined using the 10th percentile based on Spanish standardized growth reference charts. Multiple linear and logistic regression analyses were used to explore the association between FA dosages in different stages of pregnancy and child anthropometric measures at birth.

Results

In the multiple linear regression analysis, we found a tendency for a negative association between the use of high dosages of FA (≥ 5000 µg/day) in the periconceptional period of pregnancy and weight at birth compared to mothers who were non-users of FA (β = − 73.83; 95% CI − 151.71, 4.06). In the multiple logistic regression, a greater risk of SGA-w was also evident among children whose mothers took FA dosages of 1000–4999 (OR = 2.21; 95% CI 1.17, 4.19) and of ≥ 5000 µg/day (OR = 2.32; 95% CI 1.06, 5.08) compared to mothers non-users of FA in the periconceptional period of pregnancy.

Conclusion

Our findings suggest that a high dosage of FA (≥ 1000 µg/day) may be associated with an increased risk of SGA-w at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Waal CG, Weisglas-Kuperus N, van Goudoever JB, Walther FJ, NeoNed Study Group; LNF Study Group (2012). Mortality, neonatal morbidity and two year follow-up of extremely preterm infants born in The Netherlands in 2007. PloS One 7:e41302. https://doi.org/10.1371/journal.pone.0041302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Group EXPRESS, Fellman V, Hellström-Westas L, Norman M, Westgren M, Källén K, Lagercrantz H, Marsál K, Serenius F, Wennergren M (2009) One-year survival of extremely preterm infants after active perinatal care in Sweden. JAMA 301(21):2225–2233. https://doi.org/10.1001/jama.2009.771

    Article  Google Scholar 

  3. McIntire DD, Bloom SL, Casey BM, Leveno KJ (1999) Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 340(16):1234–1238. https://doi.org/10.1056/NEJM199904223401603

    Article  CAS  PubMed  Google Scholar 

  4. Santos MS, Joles JA (2012) Early determinants of cardiovascular disease. Best Pract Res Clin Endocrinol Metab 26(5):581–597. https://doi.org/10.1016/j.beem.2012.03.003

    Article  PubMed  Google Scholar 

  5. Berends LM, Ozanne SE (2012) Early determinants of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 26(5):569–580. https://doi.org/10.1016/j.beem.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  6. Risnes KR, Vatten LJ, Baker JL, Jameson K, Sovio U, Kajantie E, Osler M, Morley R, Jokela M, Painter RC, Sundh V, Jacobsen GW, Eriksson JG, Sørensen TI, Bracken MB (2011) Birthweight and mortality in adulthood: a systematic review and meta-analysis. Int J Epidemiol 40(3):647–661. https://doi.org/10.1093/ije/dyq267

    Article  PubMed  Google Scholar 

  7. Oliver MH, Jaquiery AL, Bloomfield FH, Harding JE (2007) The effects of maternal nutrition around the time of conception on the health of the offspring. Soc Reprod Fertil Suppl 64:397–410

    CAS  PubMed  Google Scholar 

  8. Pannia E, Cho CE, Kubant R, Sánchez-Hernández D, Huot PS, Harvey Anderson G (2016) Role of maternal vitamins in programming health and chronic disease. Nutr Rev 74(3):166–180. https://doi.org/10.1093/nutrit/nuv103

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lassi ZS, Salam RA, Haider BA, Bhutta ZA (2013) Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev 3:CD006896. https://doi.org/10.1002/14651858.CD006896.pub2

    Article  Google Scholar 

  10. MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338(8760):131–137

    Article  Google Scholar 

  11. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327(26):1832–1835. https://doi.org/10.1056/NEJM199212243272602

    Article  CAS  PubMed  Google Scholar 

  12. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, DC

    Google Scholar 

  13. Tamura T, Picciano MF (2006) Folate and human reproduction. Am J Clin Nutr 83(5):993–1016

    Article  CAS  PubMed  Google Scholar 

  14. Fekete K, Berti C, Trovato M, Lohner S, Dullemeijer C, Souverein OW, Cetin I, Decsi T (2012) Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. Nutr J 11:75. https://doi.org/10.1186/1475-2891-11-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Uitert EM, Steegers-Theunissen RP (2013) Influence of maternal folate status on human fetal growth parameters. Mol Nutr Food Res 57(4):582–595. https://doi.org/10.1002/mnfr.201200084

    Article  CAS  PubMed  Google Scholar 

  16. Papadopoulou E, Stratakis N, Roumeliotaki T, Sarri K, Merlo DF, Kogevinas M, Chatzi L (2013) The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr 52:327–336. https://doi.org/10.1007/s00394-012-0339-z

    Article  CAS  PubMed  Google Scholar 

  17. Navarrete-Muñoz EM, Valera-Gran D, García de la Hera M, Gimenez-Monzo D, Morales E, Julvez J, Riaño I, Tardón A, Ibarluzea J, Santa-Marina L, Murcia M, Rebagliato M, Vioque J (2015) Use of high doses of folic acid supplements in pregnant women in Spain: an INMA cohort study. BMJ Open 5(11):e009202. https://doi.org/10.1136/bmjopen-2015-009202

    Article  PubMed  PubMed Central  Google Scholar 

  18. Navarrete-Muñoz EM, Giménez Monzó D, García de La Hera M, Climent MD, Rebagliato M, Murcia M, Iñiguez C, Ballester F, Ramón R, Vioque J (2010) [Folic acid intake from diet and supplements in a population of pregnant women in Valencia, Spain]. Med Clínica 135(14):637–643. https://doi.org/10.1016/j.medcli.2010.03.033

    Article  Google Scholar 

  19. Pastor-Valero M, Navarrete-Munoz EM, Rebagliato M, Iniguez C, Murcia M, Marco A, Ballester F, Vioque J (2011) Periconceptional folic acid supplementation and anthropometric measures at birth in a cohort of pregnant women in Valencia, Spain. Br J Nutr 105(9):1352–1360

    Article  CAS  PubMed  Google Scholar 

  20. Valera-Gran D, García de la Hera M, Navarrete-Muñoz EM, Fernandez-Somoano A, Tardón A, Julvez J, Forns J, Lertxundi N, Ibarluzea JM, Murcia M, Rebagliato M, Vioque J (2014) Folic Acid supplements during pregnancy and child psychomotor development after the first year of life. JAMA Pediatr 168(11):e142611. https://doi.org/10.1001/jamapediatrics.2014.2611

    Article  PubMed  Google Scholar 

  21. Valera-Gran D, Navarrete-Muñoz EM, García de la Hera M, Fernández-Somoano A, Tardón A, Ibarluzea J, Balluerka N, Murcia M, González-Safont L, Romaguera D, Julvez J, Vioque J (2017) Effect of maternal high dosages of folic acid supplements on neurocognitive development in children at 4–5 years of age: the prospective birth cohort Infancia y Medio Ambiente (INMA) study. Am J Clin Nutr. https://doi.org/10.3945/ajcn.117.152769

    Article  PubMed  Google Scholar 

  22. Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, Olea N, Rebagliato M, Tardón A, Torrent M, Vioque J, Vrijheid M, Sunyer J (2012) Cohort Profile: the INMA–INfancia y Medio Ambiente–(Environment and Childhood) Project. Int J Epidemiol 41(4):930–940. https://doi.org/10.1093/ije/dyr054

    Article  PubMed  Google Scholar 

  23. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122:51–65

    Article  CAS  PubMed  Google Scholar 

  24. Vioque J, Navarrete-Muñoz E-M, Gimenez-Monzó D, García-de-la-Hera M, Granado F, Young IS, Ramón R, Ballester F, Murcia M, Rebagliato M, Iñiguez C (2013) Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr J 12:26. https://doi.org/10.1186/1475-2891-12-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. US Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 21. http://www.nal.usda.gov/fnic/foodcomp/Data/SR21/nutrlist/sr21a306.pdf. Accessed Nov 2008

  26. Palma I, Farran A, Cantós D (2008) Tablas de Composición de Alimentos por Medidas Caseras de Consumo Habitual en España. CESNID. McGraw-Hill Interamerican, Madrid

    Google Scholar 

  27. Rigby RA, Stasinopoulos DM (2004) Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Stat Med 23(15):3053–3076. https://doi.org/10.1002/sim.1861

    Article  PubMed  Google Scholar 

  28. Carrascosa A, Yeste D, Copil A, Gussinyé M (2004) Secular growth changes. Weight, height and body mass index values in infant, children, adolescent and young adults from Barcelona population. Med Clin (Barc) 123(12):445–451

    Article  Google Scholar 

  29. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boyles AL, Yetley EA, Thayer KA, Coates PM (2016) Safe use of high intakes of folic acid: research challenges and paths forward. Nutr Rev 74(7):469–474. https://doi.org/10.1093/nutrit/nuw015

    Article  PubMed  PubMed Central  Google Scholar 

  31. Christensen KE, Hou W, Bahous RH, Deng L, Malysheva OV, Arning E, Bottiglieri T, Caudill MA, Jerome-Majewska LA, Rozen R (2016) Moderate folic acid supplementation and MTHFD1-synthetase deficiency in mice, a model for the R653Q variant, result in embryonic defects and abnormal placental development. Am J Clin Nutr 104(5):1459–1469. https://doi.org/10.3945/ajcn.116.139519

    Article  CAS  PubMed  Google Scholar 

  32. Mikael LG, Deng L, Paul L, Selhub J, Rozen R (2013) Moderately high intake of folic acid has a negative impact on mouse embryonic development. Birt Defects Res A Clin Mol Teratol 97(1):47–52. https://doi.org/10.1002/bdra.23092

    Article  CAS  Google Scholar 

  33. Pickell L, Brown K, Li D, Wang XL, Deng L, Wu Q, Selhub J, Luo L, Jerome-Majewska L, Rozen R (2010) High intake of folic acid disrupts embryonic development in mice. Birth Defects Res A Clin Mol Teratol 91(1):8–19

    Article  CAS  PubMed  Google Scholar 

  34. van Uitert EM, van Ginkel S, Willemsen SP, Lindemans J, Koning AH, Eilers PH, Exalto N, Laven JS, Steegers EA, Steegers-Theunissen RP (2014) An optimal periconception maternal folate status for embryonic size: the Rotterdam Predict study. BJOG 121(7):821–829. https://doi.org/10.1111/1471-0528.12592

    Article  CAS  PubMed  Google Scholar 

  35. Kelly P, McPartlin J, Goggins M, Weir DG, Scott JM (1997) Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutr 65(6):1790–1795

    Article  CAS  PubMed  Google Scholar 

  36. Patel KR, Sobczyńska-Malefora A (2017) The adverse effects of an excessive folic acid intake. Eur J Clin Nutr 71(2):159–163. https://doi.org/10.1038/ejcn.2016.194

    Article  CAS  PubMed  Google Scholar 

  37. Selhub J, Rosenberg IH (2016) Excessive folic acid intake and relation to adverse health outcome. Biochimie 126:71–78. https://doi.org/10.1016/j.biochi.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  38. Hogeveen M, Blom HJ, den Heijer M (2012) Maternal homocysteine and small-for-gestational-age offspring: systematic review and meta-analysis. Am J Clin Nutr 95(1):130–136. https://doi.org/10.3945/ajcn.111.016212

    Article  CAS  PubMed  Google Scholar 

  39. Timmermans S, Jaddoe VWV, Silva LM, Hofman A, Raat H, Steegers-Theunissen RP, Steegers EA (2011) Folic acid is positively associated with uteroplacental vascular resistance: the Generation R study. Nutr Metab Cardiovasc Dis 21(1):54–61. https://doi.org/10.1016/j.numecd.2009.07.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to appreciate the English revision made by Mr. Jonathan Whitehead. The full list of the institutions is: CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Public Health, History of Medicine and Gynecology, Universidad Miguel Hernández, Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain; Pediatric Service, Hospital San Agustin, Avilés, Asturias, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Instituto de Investigación Sanitaria, BIODONOSTIA, San Sebastian; Departamento de Medicina Preventiva y Salud Pública, Universidad del País Vasco UPV-EHU; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona (Spain); Universitat Pompeu Fabra (UPF), Barcelona (Spain); Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre–Sophia Children’s Hospital, Rotterdam, The Netherlands; Department of Medicine, Universidad de Oviedo, Oviedo, Asturias, Spain; Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain; Department of Medicine, Universitat Jaume I, Castellón de la Plana, Spain.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

EMNM and JV conceived the study. EMNM, DVG and JV conducted the data analysis and prepared the manuscript; MGH contributed to the conceptual approach and manuscript preparation; SGP and MGH assisted with the nutritional data and provided feedback; JV designed the FFQ and contributed to manuscript preparation; MG, PA, AT, MR and JV supervised the data collection, obtained funding, helped with data interpretation and manuscript preparation. Critical revision of the manuscript for important intellectual content: EMNM, DVG, MGH, SGP, MG, MV, IR, AT, PA, AL, MR, JV.

Corresponding author

Correspondence to Jesus Vioque.

Ethics declarations

Funding

This study was funded by grants from Instituto de Salud Carlos III and Spanish Ministry of Health (Red INMA G03/176; CB06/02/0041; FIS 97/0588; 00/0021-2, PI061756; PS0901958; FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 05/1079, 05/1052, 06/1213, 07/0314; 09/02647; FIS-PI041436, FIS-PI081151, FIS-PI06/0867; FIS-PS09/00090, FIS-PI042018, FIS-PI09 02311, FIS PI11/01007, FISPI13/02429) Universidad de Oviedo, Conselleria de Sanitat Generalitat Valenciana, Generalitat de Catalunya-CIRIT 1999SGR 00241,Department of Health of the Basque Government (2005111093 and 2009111069), the Provincial Government of Guipuzcoa (DFG06/004 and DFG08/001).

Conflict of interest

All authors declared that they have no conflict os interest.

Ethics approval

This study was conducted with the approval of the The Institut Municipal d’Investigació Mèdica (Barcelona), the Asturian Regional Ethics Committee (Asturias), Hospital La Fe (Valencia) and Hospital Donostia (Gipuzkoa).

Additional information

For a complete list of INMA project researchers: http://www.proyectoinma.org/presentacion-inma/listado-investigadores/en_listado-investigadores.html.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete-Muñoz, E.M., Valera-Gran, D., Garcia-de-la-Hera, M. et al. High doses of folic acid in the periconceptional period and risk of low weight for gestational age at birth in a population based cohort study. Eur J Nutr 58, 241–251 (2019). https://doi.org/10.1007/s00394-017-1588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1588-7

Keywords

Navigation