European Journal of Nutrition

, Volume 57, Issue 8, pp 2839–2846 | Cite as

Association between dietary zinc intake and mortality among Chinese adults: findings from 10-year follow-up in the Jiangsu Nutrition Study

  • Zumin ShiEmail author
  • Anna Chu
  • Shiqi Zhen
  • Anne W. Taylor
  • Yue Dai
  • Malcolm Riley
  • Samir Samman
Original Contribution



Population studies of the association between zinc intake and mortality yield inconsistent findings. Using data from Jiangsu Nutrition Study, we aimed to assess the association between zinc intake and mortality among Chinese adults.


We prospectively studied 2832 adults aged 20 years and older with a mean follow-up of 9.8 years. At baseline, food intake was measured by 3-day weighed food record (WFR) between September and December in 2002. Death occurrence was assessed in 2012 during a household visit as well as by data linkage with the regional death registry. Hazard ratios (HRs) and 95% CI were calculated using competing risks regression (CVD and cancer mortality) and Cox proportional hazards analysis (all-cause mortality).


During 27,742 person-years of follow-up, there were 184 deaths [63 cancer deaths and 70 cardiovascular disease (CVD) deaths]. Dietary zinc to energy ratio was positively associated with cancer and all-cause mortality. Across quartiles of the zinc to energy ratio from low to high, the HR (95% CI) for all-cause mortality was 1.00, 1.80 (95% CI 1.10–2.95), 1.55 (95% CI 0.96–2.50), and 1.85 (95% CI 1.11–3.07), respectively. Comparing the extreme quartiles of the zinc to energy ratio, the HR for cancer mortality was 2.28 (95% CI 1.03–5.04).


Zinc intake was positively related to all-cause mortality and cancer mortality.


Zinc intake Mortality Chinese Cohort study 



The authors thank the participating regional Centres for Disease Control and Prevention in Jiangsu province, including the Nanjing, Xuzhou, Jiangyin, Taicang, Suining, Jurong, Sihong, and Haimen Centres for their support in data collection.

Compliance with ethical standards

Conflict of interest

The authors have no relevant financial interest in the subject matter of this article.

Supplementary material

394_2017_1551_MOESM1_ESM.docx (49 kb)
Supplementary material 1 (DOCX 49 KB)


  1. 1.
    World Health Organisation (2014) Global Status Report On Noncommunicable Diseases 2014Google Scholar
  2. 2.
    US Burden of Disease Collaborators (2013) The State of US Health, 1990–2010: burden of diseases, injuries and risk factors. Jama 310:591–608. doi: 10.1001/jama.2013.13805 CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mitrou PN, Kipnis V, Thiébaut AC, Reedy J, Subar AF, Wirfält E, Flood A, Mouw T, Hollenbeck AR, Leitzmann MF, Schatzkin A (2007) Mediterranean dietary pattern and prediction of all-cause mortality in a US population: results from the NIH-AARP Diet and Health Study. Arch Intern Med 167:2461–2468CrossRefGoogle Scholar
  4. 4.
    Odegaard AO, Koh W-P, Yuan J-M, Gross MD, Pereira MA (2014) Dietary patterns and mortality in a Chinese population. Am J Clin Nutr 100. doi: 10.3945/ajcn.114.086124 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17:308–314. doi: 10.1097/01.ede.0000209454.41466.b7 CrossRefPubMedGoogle Scholar
  6. 6.
    Marniemi J, Järvisalo J, Toikka T, Räihä I, Ahotupa M, Sourander L (1998) Blood vitamins, mineral elements and inflammation markers as risk factors of vascular and non-vascular disease mortality in an elderly population. Int J Epidemiol 27:799–807. doi: 10.1093/ije/27.5.799 CrossRefPubMedGoogle Scholar
  7. 7.
    Bates CJ, Hamer M, Mishra GD (2011) Redox-modulatory vitamins and minerals that prospectively predict mortality in older British people: the National Diet and Nutrition Survey of people aged 65 years and over. Br J Nutr 105:123–132. doi: 10.1017/S0007114510003053 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Samman S (2007) Zinc. Nutr Diet 64:S131-S134. doi: 10.1111/j.1747-0080.2007.00200.x CrossRefGoogle Scholar
  9. 9.
    Haase H, Rink L (2014) Multiple impacts of zinc on immune function. Metallomics Integr Biometal Sci 6:1175–1180. doi: 10.1039/c3mt00353a CrossRefGoogle Scholar
  10. 10.
    Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4:676–694. doi: 10.3390/nu4070676 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Foster M, Samman S (2010) Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 13:1549–1573CrossRefGoogle Scholar
  12. 12.
    Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition (Burbank, Los Angeles County Calif) 26:1050–1057. doi: 10.1016/j.nut.2010.03.007 CrossRefGoogle Scholar
  13. 13.
    Jansen J, Karges W, Rink L (2009) Zinc and diabetes - clinical links and molecular mechanisms. J Nutr Biochem 20:399–417. doi: 10.1016/j.jnutbio.2009.01.009 CrossRefPubMedGoogle Scholar
  14. 14.
    Capdor J, Foster M, Petocz P, Samman S (2013) Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol 27:137–142. doi: 10.1016/j.jtemb.2012.08.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Foster M, Petocz P, Samman S (2010) Effects of zinc on plasma lipoprotein cholesterol concentrations in humans: a meta-analysis of randomised controlled trials. Atherosclerosis 210:344–352. doi: 10.1016/j.atherosclerosis.2009.11.038 CrossRefPubMedGoogle Scholar
  16. 16.
    Chu A, Foster M, Samman S (2016) Zinc Status and risk of cardiovascular diseases and type 2 diabetes mellitus—a systematic review of prospective cohort studies. Nutrients 8:707. doi: 10.3390/nu8110707 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Alam S, Kelleher SL (2012) Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 4:875–903. doi: 10.3390/nu4080875 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Song Y, Ho E (2009) Zinc and prostatic cancer. Curr Opin Clin Nutr Metab Care 12:640–645CrossRefGoogle Scholar
  19. 19.
    Chinese Nutrition Society (2013) Chinese DRIs Handbook. Standards Press of China, BeijingGoogle Scholar
  20. 20.
    Schwingshackl L, Boeing H, Stelmach-Mardas M, Gottschald M, Dietrich S, Hoffmann G, Chaimani A (2017) Dietary supplements and risk of cause-specific death, cardiovascular disease, and cancer: A protocol for a systematic review and network meta-analysis of primary prevention trials. Adv Nut 8Google Scholar
  21. 21.
    Shi Z, Zhen S, Wittert GA, Yuan B, Zuo H, Taylor AW (2014) Inadequate riboflavin intake and anemia risk in a chinese population: five-year follow up of the Jiangsu Nutrition Study. PLoS One 9(2):e88862. doi: 10.1371/journal.pone.0088862 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shi Z, Zhou M, Yuan B, Qi L, Dai Y, Luo Y, Holmboe-Ottesen G (2010) Iron intake and body iron stores, anaemia and risk of hyperglycaemia among Chinese adults: the prospective Jiangsu Nutrition Study (JIN). Public Health Nutr 13(9):1319–1327. doi: 10.1017/S1368980009991868 CrossRefPubMedGoogle Scholar
  23. 23.
    Shi Z, Hu X, Yuan B, Hu G, Pan X, Dai Y, Byles JE, Holmboe-Ottesen G (2008) Vegetable-rich food pattern is related to obesity in China. Int J Obes (Lond) 32(6):975–984. doi: 10.1038/ijo.2008.21 CrossRefGoogle Scholar
  24. 24.
    Yang Y (2005) Chinese food composition table 2004. Peking University Medical Press, BeijingGoogle Scholar
  25. 25.
    Ma G, Luan D, Liu A, Li Y, Cui Z, Hu X, Yang X (2007) The analysis and evaluation of a physical activity questionnaire of Chinese employed population. Ying Yang Xue Bao 29:217–221Google Scholar
  26. 26.
    WHO (1968) Nutritional anaemias. Report of a WHO scientific group. World Health Organ Tech Rep Ser 405:5–37Google Scholar
  27. 27.
    Jin Y, Liu P, Sun J, Wang C, Min J, Zhang Y, Wang S, Wu Y (2014) Dietary exposure and risk assessment to lead of the population of Jiangsu province, China. Food additives and contaminants Part A, Chemistry, analysis, control, exposure and risk assessment 31(7):1187–1195. doi: 10.1080/19440049.2014.918283
  28. 28.
    He J, Gu D, Wu X, Reynolds K, Duan X, Yao C, Wang J, Chen CS, Chen J, Wildman RP, Klag MJ, Whelton PK (2005) Major causes of death among men and women in China. N Engl J Med 353(11):1124–1134. doi: 10.1056/NEJMsa050467 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhai F, Wang H, Du S, He Y, Wang Z, Ge K, Popkin BM (2009) Prospective study on nutrition transition in China. Nutr Rev 67(Suppl 1):S56-61. doi: 10.1111/j.1753-4887.2009.00160.x CrossRefPubMedGoogle Scholar
  30. 30.
    Institute of Medicine (US) Panel on Micronutrients (2001) Dietary Reference Intakes for Vitamin Vitamin A K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press (US), Washington (DC). doi: 10.17226/10026
  31. 31.
    Shi Z, Yuan B, Qi L, Dai Y, Zuo H, Zhou M (2010) Zinc intake and the risk of hyperglycemia among Chinese adults: The prospective Jiangsu Nutrition Study (JIN). J Nutr Health Aging 14(4):332–335CrossRefGoogle Scholar
  32. 32.
    Shi Z, Zhen S, Zimmet PZ, Zhou Y, Zhou Y, Magliano DJ, Taylor AW (2016) Association of impaired fasting glucose, diabetes and dietary patterns with mortality: a 10-year follow-up cohort in Eastern China. Acta Diabetol 53(5):799–806. doi: 10.1007/s00592-016-0875-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Yary T, Virtanen JK, Ruusunen A, D T-pTM, Voutilainen S (2017) Association between serum zinc and later development of metabolic syndrome in middle aged and older men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Nutrition (Burbank, Calif) 37:43–47CrossRefGoogle Scholar
  34. 34.
    Memon AuR, Kazi TG, Afridi HI, Jamali MK, Arain MB, Jalbani N, Syed N (2007) Evaluation of zinc status in whole blood and scalp hair of female cancer patients. Clin Chim Acta 379:66–70. doi: 10.1016/j.cca.2006.12.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Piccinini L, Borella P, Bargellini A, Medici CI, Zoboli A (1996) A case-control study on selenium, zinc, and copper in plasma and hair of subjects affected by breast and lung cancer. Biol Trace Elem Res 51:23–30. doi: 10.1007/BF02790144 CrossRefPubMedGoogle Scholar
  36. 36.
    Cavallo F, Gerber M, Marubini E, Richardson S, Barbieri A, Costa A, DeCarli A, Pujol H (1991) Zinc and copper in breast cancer. A joint study in Northern Italy and Southern France. Cancer 67:738–745CrossRefGoogle Scholar
  37. 37.
    Mahmoud AM, Al-Alem U, Dabbous F, Ali MM, Batai K, Shah E, Kittles RA (2016) Zinc intake and risk of prostate cancer: Case-control study and meta-analysis. PloS One 11:1–18. doi: 10.1371/journal.pone.0165956 CrossRefGoogle Scholar
  38. 38.
    Lappano R, Malaguarnera R, Belfiore A, Maggiolini M (2016) Recent advances on the stimulatory effects of metals in breast cancer. Mol Cell Endocrinol. doi: 10.1016/j.mce.2016.10.017 CrossRefPubMedGoogle Scholar
  39. 39.
    Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, Vivacqua A, Abonante S, Cappello AR, Dolce V, Belfiore A, Maggiolini M, Lappano R (2016) GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog 593:580–593. doi: 10.1002/mc.22518 CrossRefGoogle Scholar
  40. 40.
    Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology 149:4912–4920. doi: 10.1210/en.2008-0351 CrossRefPubMedGoogle Scholar
  41. 41.
    Kolenko V, Teper E, Kutikov A, Uzzo R (2013) Zinc and zinc transporters in prostate carcinogenesis. Nat Rev Urol 10:219–226. doi: 10.1038/nrurol.2013.43 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shi Z, Zhen S, Orsini N, Zhou Y, Zhou Y, Liu J, Taylor AW (2017) Association between dietary lead intake and 10-year mortality among Chinese adults. Environ Sci Pollut Res Int. doi: 10.1007/s11356-017-8871-2 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Nutrition and Foodborne Disease PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
  2. 2.Discipline of Medicine, Adelaide Medical SchoolUniversity of AdelaideAdelaideAustralia
  3. 3.Department of Human NutritionThe University of OtagoDunedinNew Zealand
  4. 4.Commonwealth Scientific and Industrial Research Organisation (CSIRO)AdelaideAustralia
  5. 5.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia

Personalised recommendations