Advertisement

European Journal of Nutrition

, Volume 57, Issue 8, pp 2819–2826 | Cite as

Serum gamma-glutamyltransferase is inversely associated with dietary total and coffee-derived polyphenol intakes in apparently healthy Japanese men

  • Chie Taguchi
  • Yoshimi Kishimoto
  • Kazuo Kondo
  • Kazushige Tohyama
  • Toshinao GodaEmail author
Original Contribution

Abstract

Purpose

Serum γ-glutamyltransferase (GGT) has been proposed as a marker of oxidative stress. Here, we examined the association between serum GGT and the dietary intake of polyphenols, which have antioxidant properties.

Methods

A cross-sectional survey including 7960 apparently healthy Japanese men (aged 22–86 years) who participated in health checkups was conducted in Shizuoka, Japan. We analyzed these subjects’ clinical serum parameters and lifestyle factors, including dietary polyphenol intake, which was evaluated by a self-administered questionnaire and by matching the subjects’ food consumption data with our original polyphenol content database.

Results

The average intake of polyphenols was 1157 ± 471 mg/day, and green tea was the largest source of polyphenols at 40%, followed by coffee at 36%. Dividing the population according to quintiles of total polyphenol intake, the difference in polyphenol intake from coffee between the groups was much greater than the difference in polyphenol intake from green tea. The analysis of the association between polyphenol intake and biological parameters showed a significant negative association between polyphenol intake and the levels of systolic and diastolic blood pressure (SBP and DBP), GGT, and alanine aminotransferase (ALT) after adjusting for age, smoking habit, energy intake and alcohol intake. The GGT levels were inversely associated with the polyphenol intake from coffee, but not with that from green tea. Multivariable linear regression analyses demonstrated that the subjects’ GGT levels were negatively and independently associated with their polyphenol intake.

Conclusions

The intake of total polyphenol including coffee as a major contributor is inversely associated with the serum GGT concentration in Japanese males.

Keywords

Polyphenol intake Gamma-glutamyltransferase Green tea Coffee GGT 

Notes

Acknowledgements

This study was financially supported by a Grant-in-Aid for Scientific Research (26282027) and the Global COE Program of the Center of Excellence for Innovation in Human Health Sciences from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

References

  1. 1.
    Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278. doi: 10.4161/oxim.2.5.9498 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95(2):454–464. doi: 10.3945/ajcn.111.016634 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kesse-Guyot E, Fezeu L, Andreeva VA, Touvier M, Scalbert A, Hercberg S, Galan P (2012) Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr 142(1):76–83. doi: 10.3945/jn.111.144428 CrossRefPubMedGoogle Scholar
  4. 4.
    Ovaskainen ML, Torronen R, Koponen JM, Sinkko H, Hellstrom J, Reinivuo H, Mattila P (2008) Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr 138(3):562–566CrossRefGoogle Scholar
  5. 5.
    Tresserra-Rimbau A, Medina-Remon A, Perez-Jimenez J, Martinez-Gonzalez MA, Covas MI, Corella D, Salas-Salvado J, Gomez-Gracia E, Lapetra J, Aros F, Fiol M, Ros E, Serra-Majem L, Pinto X, Munoz MA, Saez GT, Ruiz-Gutierrez V, Warnberg J, Estruch R, Lamuela-Raventos RM (2013) Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study. Nutr Metab Cardiovasc Dis. doi: 10.1016/j.numecd.2012.10.008 CrossRefPubMedGoogle Scholar
  6. 6.
    Fukushima Y, Ohie T, Yonekawa Y, Yonemoto K, Aizawa H, Mori Y, Watanabe M, Takeuchi M, Hasegawa M, Taguchi C, Kondo K (2009) Coffee and green tea as a large source of antioxidant polyphenols in the Japanese population. J Agric Food Chem 57(4):1253–1259. doi: 10.1021/jf802418j CrossRefPubMedGoogle Scholar
  7. 7.
    Fukushima Y, Tashiro T, Kumagai A, Ohyanagi H, Horiuchi T, Takizawa K, Sugihara N, Kishimoto Y, Taguchi C, Tani M, Kondo K (2014) Coffee and beverages are the major contributors to polyphenol consumption from food and beverages in Japanese middle-aged women. J Nutr Sci 3:e48. doi: 10.1017/jns2014.19 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Taguchi C, Fukushima Y, Kishimoto Y, Saita E, Suzuki-Sugihara N, Yoshida D, Kondo K (2015) Polyphenol intake from beverages in Japan over an 18-year period (1996–2013): trends by year, age, gender and season. J Nutr Sci Vitaminol (Tokyo) 61(4):338–344CrossRefGoogle Scholar
  9. 9.
    Taguchi C, Fukushima Y, Kishimoto Y, Suzuki-Sugihara N, Saita E, Takahashi Y, Kondo K (2015) Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrients 7(12):10269–10281. doi: 10.3390/nu7125530 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rebello SA, Chen CH, Naidoo N, Xu W, Lee J, Chia KS, Tai ES, van Dam RM (2011) Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic Asian population: a cross-sectional study. Nutr J 10:61. doi: 10.1186/1475-2891-10-61 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Maki T, Pham NM, Yoshida D, Yin G, Ohnaka K, Takayanagi R, Kono S (2010) The relationship of coffee and green tea consumption with high-sensitivity C-reactive protein in Japanese men and women. Clin Chem Lab Med 48(6):849–854. doi: 10.1515/cclm.2010.161 CrossRefPubMedGoogle Scholar
  12. 12.
    Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I, Umeda T, Wakabayashi K, Imanishi K, Nishikawa H, Ogawa S, Katsurada M, Nakagawa K, Yoshizawa N (2001) Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 54(8):823–829CrossRefGoogle Scholar
  13. 13.
    Sunto A, Mochizuki K, Miyauchi R, Misaki Y, Shimada M, Kasezawa N, Tohyama K, Goda T (2013) Serum gamma-GTP activity is closely associated with serum CRP levels in non-overweight and overweight middle-aged Japanese men. J Nutr Sci Vitaminol (Tokyo) 59(2):108–114CrossRefGoogle Scholar
  14. 14.
    Lee DH, Jacobs DR Jr, Gross M, Kiefe CI, Roseman J, Lewis CE, Steffes M (2003) Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin Chem 49(8):1358–1366CrossRefGoogle Scholar
  15. 15.
    Lee DH, Steffen LM, Jacobs DR Jr (2004) Association between serum gamma-glutamyltransferase and dietary factors: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 79(4):600–605CrossRefGoogle Scholar
  16. 16.
    Yamada J, Tomiyama H, Yambe M, Koji Y, Motobe K, Shiina K, Yamamoto Y, Yamashina A (2006) Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome. Atherosclerosis 189(1):198–205. doi: 10.1016/j.atherosclerosis.2005.11.036 CrossRefPubMedGoogle Scholar
  17. 17.
    Kobayashi S, Murakami K, Sasaki S, Okubo H, Hirota N, Notsu A, Fukui M, Date C (2011) Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr 14(7):1200–1211. doi: 10.1017/s1368980011000504 CrossRefPubMedGoogle Scholar
  18. 18.
    Kobayashi S, Honda S, Murakami K, Sasaki S, Okubo H, Hirota N, Notsu A, Fukui M, Date C (2012) Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol 22(2):151–159CrossRefGoogle Scholar
  19. 19.
    Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, Ito C, Inagaki N, Iwamoto Y, Kasuga M, Hanafusa T, Haneda M, Ueki K (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabet Invest 1(5):212–228. doi: 10.1111/j.2040-1124.2010.00074.x CrossRefGoogle Scholar
  20. 20.
    Perez-Jimenez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S, Galan P, Scalbert A (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93(6):1220–1228. doi: 10.3945/ajcn.110.007096 CrossRefPubMedGoogle Scholar
  21. 21.
    World Health Organization. Global status report on noncommunicable diseases (2010). http://www.who.int/nmh/publications/ncd_report_full_en.pdf. Accessed 8 Feb 2017
  22. 22.
    Zamora-Ros R, Knaze V, Rothwell JA, Hemon B, Moskal A, Overvad K, Tjonneland A, Kyro C, Fagherazzi G, Boutron-Ruault MC, Touillaud M, Katzke V, Kuhn T, Boeing H, Forster J, Trichopoulou A, Valanou E, Peppa E, Palli D, Agnoli C, Ricceri F, Tumino R, de Magistris MS, Peeters PH, Bueno-de-Mesquita HB, Engeset D, Skeie G, Hjartaker A, Menendez V, Agudo A, Molina-Montes E, Huerta JM, Barricarte A, Amiano P, Sonestedt E, Nilsson LM, Landberg R, Key TJ, Khaw KT, Wareham NJ, Lu Y, Slimani N, Romieu I, Riboli E, Scalbert A (2015) Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr 55(4):1359–1375. doi: 10.1007/s00394-015-0950-x CrossRefPubMedGoogle Scholar
  23. 23.
    Vitale M, Vaccaro O, Masulli M, Bonora E, Del Prato S, Giorda CB, Nicolucci A, Squatrito S, Auciello S, Babini AC, Bani L, Buzzetti R, Cannarsa E, Cignarelli M, Cigolini M, Clemente G, Cocozza S, Corsi L, D’Angelo F, Dall’Aglio E, Di Cianni G, Fontana L, Gregori G, Grioni S, Giordano C, Iannarelli R, Iovine C, Lapolla A, Lauro D, Laviola L, Mazzucchelli C, Signorini S, Tonutti L, Trevisan R, Zamboni C, Riccardi G, Rivellese AA (2016) Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin Nutr. doi: 10.1016/j.clnu.2016.11.002 CrossRefPubMedGoogle Scholar
  24. 24.
    Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pajak A (2016) Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr 56(4):1409–1420. doi: 10.1007/s00394-016-1187-z CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Medina-Remon A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E, Buil-Cosiales P, Sacanella E, Covas MI, Corella D, Salas-Salvado J, Gomez-Gracia E, Ruiz-Gutierrez V, Ortega-Calvo M, Garcia-Valdueza M, Aros F, Saez GT, Serra-Majem L, Pinto X, Vinyoles E, Estruch R, Lamuela-Raventos RM (2015) Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis 25(1):60–67. doi: 10.1016/j.numecd.2014.09.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang H, Forman HJ (2009) Redox regulation of gamma-glutamyl transpeptidase. Am J Respir Cell Mol Biol 41(5):509–515. doi: 10.1165/rcmb.2009-0169TR CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee DH, Blomhoff R, Jacobs DR Jr (2004) Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38(6):535–539CrossRefGoogle Scholar
  28. 28.
    Lim JS, Yang JH, Chun BY, Kam S, Jacobs DR Jr, Lee DH (2004) Is serum gamma-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress? Free Radic Biol Med 37(7):1018–1023. doi: 10.1016/j.freeradbiomed.2004.06.032 CrossRefPubMedGoogle Scholar
  29. 29.
    Lee DH, Gross MD, Jacobs DR, Jr (2004) Association of serum carotenoids and tocopherols with gamma-glutamyltransferase: the cardiovascular risk development in young adults (CARDIA) Study. Clin Chem 50 (3):582–588. doi: 10.1373/clinchem.2003.028852 CrossRefPubMedGoogle Scholar
  30. 30.
    Liangpunsakul S, Chalasani N (2005) Unexplained elevations in alanine aminotransferase in individuals with the metabolic syndrome: results from the third National Health and Nutrition Survey (NHANES III). Am J Med Sci 329(3):111–116CrossRefGoogle Scholar
  31. 31.
    Xiao Q, Sinha R, Graubard BI, Freedman ND (2014) Inverse associations of total and decaffeinated coffee with liver enzyme levels in National Health and Nutrition Examination Survey 1999–2010. Hepatology 60(6):2091–2098. doi: 10.1002/hep.27367 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Danielsson J, Kangastupa P, Laatikainen T, Aalto M, Niemela O (2013) Dose- and gender-dependent interactions between coffee consumption and serum GGT activity in alcohol consumers. Alcohol Alcohol 48(3):303–307. doi: 10.1093/alcalc/agt017 CrossRefPubMedGoogle Scholar
  33. 33.
    Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I, Umeda T, Wakabayashi K, Imanishi K, Nishikawa H, Ogawa S, Katsurada M, Nakagawa K, Yoshizawa N (1999) Coffee drinking and serum gamma-glutamyltransferase: an extended study of Self-Defense Officials of Japan. Ann Epidemiol 9(5):325–331CrossRefGoogle Scholar
  34. 34.
    Nakanishi N, Nakamura K, Nakajima K, Suzuki K, Tatara K (2000) Coffee consumption and decreased serum gamma-glutamyltransferase: a study of middle-aged Japanese men. Eur J Epidemiol 16(5):419–423CrossRefGoogle Scholar
  35. 35.
    Alkerwi A, Sauvageot N, Crichton GE, Elias MF, Stranges S (2016) Daily chocolate consumption is inversely associated with insulin resistance and liver enzymes in the Observation of Cardiovascular Risk Factors in Luxembourg study. Br J Nutr 115(9):1661–1668. doi: 10.1017/s0007114516000702 CrossRefPubMedGoogle Scholar
  36. 36.
    Nakajima T, Ohta S, Fujita H, Murayama N, Sato A (1994) Carbohydrate-related regulation of the ethanol-induced increase in serum gamma-glutamyl transpeptidase activity in adult men. Am J Clin Nutr 60(1):87–92CrossRefGoogle Scholar
  37. 37.
    Bonaccio M, Pounis G, Cerletti C, Donati MB, Iacoviello L, de Gaetano G (2017) Mediterranean diet, dietary polyphenols and low grade inflammation: results from the MOLI-SANI study. Br J Clin Pharmacol 83(1):107–113. doi: 10.1111/bcp.12924 CrossRefPubMedGoogle Scholar
  38. 38.
    Lee DH, Jacobs DR, Jr (2005) Association between serum gamma-glutamyltransferase and C-reactive protein. Atherosclerosis 178 (2):327–330. doi: 10.1016/j.atherosclerosis.2004.08.027 CrossRefPubMedGoogle Scholar
  39. 39.
    Saijo Y, Utsugi M, Yoshioka E, Horikawa N, Sato T, Gong Y, Kishi R (2008) The relationship of gamma-glutamyltransferase to C-reactive protein and arterial stiffness. Nutr Metab Cardiovasc Dis 18(3):211–219. doi: 10.1016/j.numecd.2006.10.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
  2. 2.Endowed Research Department “Food for Health”Ochanomizu UniversityTokyoJapan
  3. 3.Institute of Life Innovations StudiesToyo UniversityOra-gunJapan
  4. 4.SBS Shizuoka Health Promotion CenterShizuokaJapan

Personalised recommendations