European Journal of Nutrition

, Volume 57, Issue 8, pp 2759–2769 | Cite as

Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice

  • Susanne M. HenningEmail author
  • Jieping Yang
  • Mark Hsu
  • Ru-Po Lee
  • Emma M. Grojean
  • Austin Ly
  • Chi-Hong Tseng
  • David Heber
  • Zhaoping Li
Original Contribution



Decaffeinated green tea (GT) and black tea (BT) polyphenols inhibit weight gain in mice fed an obesogenic diet. Since the intestinal microflora is an important contributor to obesity, it was the objective of this study to determine whether the intestinal microflora plays a role in the anti-obesogenic effect of GT and BT.


C57BL/6J mice were fed a high-fat/high-sucrose diet (HF/HS, 32% energy from fat; 25% energy from sucrose) or the same diet supplemented with 0.25% GTP or BTP or a low-fat/high-sucrose (LF/HS, 10.6% energy from fat, 25% energy from sucrose) diet for 4 weeks. Bacterial composition was assessed by MiSeq sequencing of the 16S rRNA gene.


GTP and BTP diets resulted in a decrease of cecum Firmicutes and increase in Bacteroidetes. The relative proportions of Blautia, Bryantella, Collinsella, Lactobacillus, Marvinbryantia, Turicibacter, Barnesiella, and Parabacteroides were significantly correlated with weight loss induced by tea extracts. BTP increased the relative proportion of Pseudobutyrivibrio and intestinal formation of short-chain fatty acids (SCFA) analyzed by gas chromatography. Cecum propionic acid content was significantly correlated with the relative proportion of Pseudobutyrivibrio. GTP and BTP induced a significant increase in hepatic 5′adenosylmonophosphate-activated protein kinase (AMPK) phosphorylation by 70 and 289%, respectively (P < 0.05) determined by Western blot.


In summary, both BTP and GTP induced weight loss in association with alteration of the microbiota and increased hepatic AMPK phosphorylation. We hypothesize that BTP increased pAMPK through increased intestinal SCFA production, while GTPs increased hepatic AMPK through GTP present in the liver.


Black tea Green tea Polyphenols Microflora Obesity AMPK phosphorylation Short-chain fatty acids 



This work was supported by the National Institute of Health (R03CA171583 and P50CA092131) and departmental funds of the Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2017_1542_MOESM1_ESM.docx (378 kb)
Supplementary material 1 (DOCX 378 kb)


  1. 1.
    Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S (2015) Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr 55(7):939–954. doi: 10.1080/10408398.2012.678949 CrossRefPubMedGoogle Scholar
  2. 2.
    Sharma V, Rao LJ (2009) A thought on the biological activities of black tea. Crit Rev Food Sci Nutr 49(5):379–404. doi: 10.1080/10408390802068066 CrossRefPubMedGoogle Scholar
  3. 3.
    Heber D, Zhang Y, Yang J, Ma JE, Henning SM, Li Z (2014) Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets. J Nutr 144(9):1385–1393. doi: 10.3945/jn.114.191007 CrossRefPubMedGoogle Scholar
  4. 4.
    Yang CS, Zhang J, Zhang L, Huang J, Wang Y (2016) Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 60(1):160–174. doi: 10.1002/mnfr.201500428 CrossRefPubMedGoogle Scholar
  5. 5.
    Sae-Tan S, Grove KA, Kennett MJ, Lambert JD (2011) (−)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food Funct 2(2):111–116. doi: 10.1039/c0fo00155d CrossRefPubMedGoogle Scholar
  6. 6.
    Lee LS, Choi JH, Sung MJ, Hur JY, Hur HJ, Park JD, Kim YC, Gu EJ, Min B, Kim HJ (2015) Green tea changes serum and liver metabolomic profiles in mice with high-fat diet-induced obesity. Mol Nutr Food Res 59(4):784–794. doi: 10.1002/mnfr.201400470 CrossRefPubMedGoogle Scholar
  7. 7.
    Ikeda I, Hamamoto R, Uzu K, Imaizumi K, Nagao K, Yanagita T, Suzuki Y, Kobayashi M, Kakuda T (2005) Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. Biosci Biotechnol Biochem 69(5):1049–1053CrossRefGoogle Scholar
  8. 8.
    Korpela K, Flint HJ, Johnstone AM, Lappi J, Poutanen K, Dewulf E, Delzenne N, de Vos WM, Salonen A (2014) Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One 9(6):e90702. doi: 10.1371/journal.pone.0090702 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63(9):1513–1521. doi: 10.1136/gutjnl-2014-306928 CrossRefPubMedGoogle Scholar
  10. 10.
    Tuohy KM, Fava F, Viola R (2014) ’The way to a man’s heart is through his gut microbiota’—dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 73(2):172–185. doi: 10.1017/S0029665113003911 CrossRefPubMedGoogle Scholar
  11. 11.
    Million M, Lagier JC, Yahav D, Paul M (2013) Gut bacterial microbiota and obesity. Clin Microbiol Infect 19(4):305–313. doi: 10.1111/1469-0691.12172 CrossRefPubMedGoogle Scholar
  12. 12.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. doi: 10.1038/nature05414 CrossRefGoogle Scholar
  13. 13.
    Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, Pan C, Civelek M, Rau CD, Bennett BJ, Mehrabian M, Ursell LK, He A, Castellani LW, Zinker B, Kirby M, Drake TA, Drevon CA, Knight R, Gargalovic P, Kirchgessner T, Eskin E, Lusis AJ (2013) Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17(1):141–152. doi: 10.1016/j.cmet.2012.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tzounis X, Vulevic J, Kuhnle GG, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JP (2008) Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 99(4):782–792. doi: 10.1017/S0007114507853384 CrossRefPubMedGoogle Scholar
  15. 15.
    Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157(9):876–884. doi: 10.1016/j.resmic.2006.07.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Jin JS, Touyama M, Hisada T, Benno Y (2012) Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiol Immunol 56(11):729–739. doi: 10.1111/j.1348-0421.2012.00502.x CrossRefPubMedGoogle Scholar
  17. 17.
    Liu Z, Chen Z, Guo H, He D, Zhao H, Wang Z, Zhang W, Liao L, Zhang C, Ni L (2016) The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct 7(12):4869–4879. doi: 10.1039/c6fo01439a CrossRefPubMedGoogle Scholar
  18. 18.
    den Besten G, Gerding A, van Dijk TH, Ciapaite J, Bleeker A, van Eunen K, Havinga R, Groen AK, Reijngoud DJ, Bakker BM (2015) Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor gamma and glucagon-like peptide-1. PLoS One 10(8):e0136364. doi: 10.1371/journal.pone.0136364 CrossRefGoogle Scholar
  19. 19.
    Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751–E760. doi: 10.1152/ajpendo.00745.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xie B, Shi H, Chen Q, Ho CT (1993) Antioxidant properties of fractions and polyphenol constituents from green, oolong and black teas. Proc Natl Sci Counc Repub China B 17(2):77–84PubMedGoogle Scholar
  21. 21.
    Kuhnert N, Drynan JW, Obuchowicz J, Clifford MN, Witt M (2010) Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Commun Mass Spectrom 24(23):3387–3404. doi: 10.1002/rcm.4778 CrossRefPubMedGoogle Scholar
  22. 22.
    Singleton VL, Esau P (1969) Phenolic substances in grapes and wine, and their significance. Adv Food Res Suppl 1:1–261PubMedGoogle Scholar
  23. 23.
    Zhao G, Liu JF, Nyman M, Jonsson JA (2007) Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography. J Chromatogr B Anal Technol Biomed Life Sci 846(1–2):202–208. doi: 10.1016/j.jchromb.2006.09.027 CrossRefGoogle Scholar
  24. 24.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. doi: 10.1128/AEM.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Seo DB, Jeong HW, Cho D, Lee BJ, Lee JH, Choi JY, Bae IH, Lee SJ (2015) Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J Med Food 18(5):549–556. doi: 10.1089/jmf.2014.3265 CrossRefPubMedGoogle Scholar
  27. 27.
    Yang J, Martinez I, Walter J, Keshavarzian A, Rose DJ (2013) In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23:74–81. doi: 10.1016/j.anaerobe.2013.06.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214. doi: 10.1126/science.1241214 CrossRefPubMedGoogle Scholar
  29. 29.
    Kasperowicz A, Stan-Glasek K, Guczynska W, Piknova M, Pristas P, Nigutova K, Javorsky P, Michalowski T (2010) Fructanolytic and saccharolytic enzymes of the rumen bacterium Pseudobutyrivibrio ruminis strain 3—preliminary study. Folia Microbiol 55(4):329–331. doi: 10.1007/s12223-010-0051-4 CrossRefGoogle Scholar
  30. 30.
    Zhong Y, Nyman M, Fak F (2015) Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol Nutr Food Res 59(10):2066–2076. doi: 10.1002/mnfr.201500187 CrossRefPubMedGoogle Scholar
  31. 31.
    Brahe LK, Astrup A, Larsen LH (2013) Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 14(12):950–959. doi: 10.1111/obr.12068 CrossRefPubMedGoogle Scholar
  32. 32.
    Nyambe-Silavwe H, Williamson G (2016) Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention. Br J Nutr 116(3):443–450. doi: 10.1017/S0007114516002221 CrossRefPubMedGoogle Scholar
  33. 33.
    Striegel L, Kang B, Pilkenton SJ, Rychlik M, Apostolidis E (2015) Effect of black tea and black tea pomace polyphenols on alpha-glucosidase and alpha-amylase inhibition, relevant to type 2 diabetes prevention. Front Nutr 2:3. doi: 10.3389/fnut.2015.00003 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    den Besten G, Havinga R, Bleeker A, Rao S, Gerding A, van Eunen K, Groen AK, Reijngoud DJ, Bakker BM (2014) The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome. PLoS One 9(9):e107392. doi: 10.1371/journal.pone.0107392 CrossRefGoogle Scholar
  35. 35.
    Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33:1–7. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  36. 36.
    Henning SM, Wang P, Abgaryan N, Vicinanza R, de Oliveira DM, Zhang Y, Lee RP, Carpenter CL, Aronson WJ, Heber D (2013) Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer. Mol Nutr Food Res 57(3):483–493. doi: 10.1002/mnfr.201200646 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A (2017) Bioavailability of black tea theaflavins: absorption, metabolism, and colonic catabolism. J Agric Food Chem 65(26):5365–5374. doi: 10.1021/acs.jafc.7b01707 CrossRefPubMedGoogle Scholar
  38. 38.
    Rocha A, Bolin AP, Cardoso CA, Otton R (2016) Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity. Eur J Nutr 55(7):2231–2244. doi: 10.1007/s00394-015-1033-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Santamarina AB, Oliveira JL, Silva FP, Carnier J, Mennitti LV, Santana AA, de Souza GH, Ribeiro EB, Oller do Nascimento CM, Lira FS, Oyama LM (2015) Green tea extract rich in epigallocatechin-3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet. PLoS One 10(11):e0141227. doi: 10.1371/journal.pone.0141227 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Center for Human Nutrition, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Statistics Core, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations