European Journal of Nutrition

, Volume 57, Issue 3, pp 861–876 | Cite as

Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis

  • Fabiana de Faria GhettiEmail author
  • Daiane Gonçalves Oliveira
  • Juliano Machado de Oliveira
  • Lincoln Eduardo Villela Vieira de Castro Ferreira
  • Dionéia Evangelista Cesar
  • Ana Paula Boroni Moreira



Nonalcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without fibrosis. The prevalence of NASH has increased with the obesity epidemic, but its etiology is multifactorial. The current studies suggest the role of gut microbiota in the development and progression of NASH. The aim is to review the studies that investigate the relationship between gut microbiota and NASH. These review also discusses the pathophysiological mechanisms and the influence of diet on the gut–liver axis.


The available literature has proposed mechanisms for an association between gut microbiota and NASH, such as: modification energy homeostasis, lipopolysaccharides (LPS)–endotoxemia, increased endogenous production of ethanol, and alteration in the metabolism of bile acid and choline. There is evidence to suggest that NASH patients have a higher prevalence of bacterial overgrowth in the small intestine and changes in the composition of the gut microbiota. However, there is still a controversy regarding the microbiome profile in this population. The abundance of Bacteroidetes phylum may be increased, decreased, or unaltered in NASH patients. There is an increase in the Escherichia and Bacteroides genus. There is depletion of certain taxa, such as Prevotella and Faecalibacterium.


Although few studies have evaluated the composition of the gut microbiota in patients with NASH, it is observed that these individuals have a distinct gut microbiota, compared to the control groups, which explains, at least in part, the genesis and progression of the disease through multiple mechanisms. Modulation of the gut microbiota through diet control offers new challenges for future studies.


Nonalcoholic fatty liver disease Dysbiosis Steatohepatitis Gut microbiota Microbiome 



The authors gratefully acknowledge the combined support of the Brazilian government organizations (Comissão de Aperfeiçoamento de Pessoal do Nível Superior-CAPES and Fundação de Amparo à Pesquisa do Estado de Minas Gerais-FAPEMIG).

Author contributions

The author contributions were as follows: FFG and DGO designed the concept of the study, and all authors were involved in the literature search and review. FFG and DGO wrote the manuscript. APBM, JMO, DEC and LEVVCF were involved with editing the manuscript, and all authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu W, Baker RD, Bhatia T et al (2016) Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 73(10):1969–1987. doi: 10.1007/s00018-016-2161-x CrossRefGoogle Scholar
  2. 2.
    Tijera FH, Servín-Caamaño AI (2015) Pathophysiological mechanisms involved in nonalcoholic steatohepatitis and novel potential therapeutic targets. World J Hepatol 7(10):1297–1301. doi: 10.4254/wjh.v7.i10.1297 CrossRefGoogle Scholar
  3. 3.
    Browning JD, Szczepaniak LS, Dobbins R et al (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40(6):1387–1395CrossRefGoogle Scholar
  4. 4.
    Wanless IR, Lentz JS (1990) Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 12(5):1106–1110CrossRefGoogle Scholar
  5. 5.
    Losekann A, Weston AC, Mattos AA et al (2015) Nonalcoholic steatohepatitis (NASH): risk factors in morbidly obese patients. Int J Mol Sci 16(10):25552–25559CrossRefGoogle Scholar
  6. 6.
    Ekstedt M, Franzén LE, Mathiesen UL et al (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44(4):865–873CrossRefGoogle Scholar
  7. 7.
    Bacon BR, Farahvash MJ, Janney CG et al (1994) Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology 107(4):1103–1109CrossRefGoogle Scholar
  8. 8.
    White DL, Kanwal F, El-Serag HB (2012) Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol 10(12):1342–1359CrossRefGoogle Scholar
  9. 9.
    Orman ES, Barritt AS, Wheeler SB et al (2013) Declining liver utilization for transplantation in the United States and the impact of donation after cardiac death. Liver Transpl 19(1):59–68CrossRefGoogle Scholar
  10. 10.
    Jumpertz R, Le DS, Turnbaugh PJ et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94(1):58–65CrossRefGoogle Scholar
  11. 11.
    Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci 101(4):15718–15723CrossRefGoogle Scholar
  12. 12.
    Csak T, Ganz M, Pespisa J et al (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54(1):133–144CrossRefGoogle Scholar
  13. 13.
    Miura K, Kodama Y, Inokuchi S et al (2010) Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139(1):323–334CrossRefGoogle Scholar
  14. 14.
    Wigg AJ, Roberts-Thomson IC, Dymock RB et al (2001) The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor á in the pathogenesis of nonalcoholic steatohepatitis. Gut 48(2):206–211CrossRefGoogle Scholar
  15. 15.
    Miele L, Valenza V, La Torre G et al (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49(6):1877–1887CrossRefGoogle Scholar
  16. 16.
    Mouzaki M, Comelli EM, Arendt BM (2013) Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58(1):120–127CrossRefGoogle Scholar
  17. 17.
    Wong VW-S, Tse C-H, Lam TT-Y et al (2013) Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study. PLoS One 8(4):e62885. doi: 10.1371/journal.pone.0062885 CrossRefGoogle Scholar
  18. 18.
    Zhu L, Baker SS, Gill C et al (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2):601–609CrossRefGoogle Scholar
  19. 19.
    Preidis GA, Versalovic J (2009) Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136(6):2015–2031CrossRefGoogle Scholar
  20. 20.
    Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114(4):842–845CrossRefGoogle Scholar
  21. 21.
    Donnelly KL, Smith CI, Schwarzenberg SJ et al (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351CrossRefGoogle Scholar
  22. 22.
    Mittendorfer B, Yoshino M, Patterson BW et al (2016) VLDL triglyceride kinetics in lean, overweight, and obese men and women. J Clin Endocrinol Metab 101:4151–4160CrossRefGoogle Scholar
  23. 23.
    Pessayre D, Berson A, Fromenty B et al (2001) Mitochondria in steatohepatitis. Semin Liver Dis 21:57–69CrossRefGoogle Scholar
  24. 24.
    Leclerq IA, Farrell GC, Fiels J et al (2000) CYP2EI and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Investig 105:1067–1075CrossRefGoogle Scholar
  25. 25.
    Parola M, Pinzani M, Casini A et al (1993) Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen alpha 1(I) gene expression in human liver fat-storing cells. Biochim Biophys Res Commun 194:1044–1050CrossRefGoogle Scholar
  26. 26.
    Jaeschke H, Wang Y, Essani NA (1996) Reactive oxygen species activate the transcription factor NF-kB in the liver by induction of lipid peroxidation (abstr). Hepatology 24:238ACrossRefGoogle Scholar
  27. 27.
    Lee KS, Buck M, Houglum K, Chojkier M (1995) Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Investig 96:2461–2468CrossRefGoogle Scholar
  28. 28.
    Wang B, Jiang X, Cao M et al (2016) Altered fecal microbiota correlates with liver biochemistry in nonobese patients with nonalcoholic fatty liver disease. Sci Rep 6:32002. doi: 10.1038/srep32002 CrossRefGoogle Scholar
  29. 29.
    Takaki A, Kawai D, Yamamoto K (2013) Multiple hits, including oxidative stress, as pathogenesis and treatment target in nonalcoholic steatohepatitis (NASH). Int J Mol Sci 14:20704–20728. doi: 10.3390/ijms141020704 CrossRefGoogle Scholar
  30. 30.
    Yamaguchi K, Yang L, McCall S et al (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45(6):1366–1374CrossRefGoogle Scholar
  31. 31.
    Tilg H, Moschen AR (2010) Evolution of Inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52(5):1836–1846CrossRefGoogle Scholar
  32. 32.
    Feldstein AE, Werneburg NW, Canbay A et al (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40:185–194CrossRefGoogle Scholar
  33. 33.
    Mari M, Caballero F, Colell A et al (2006) Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4:185–198CrossRefGoogle Scholar
  34. 34.
    Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048. doi: 10.1016/j.metabol.2015.12.012 CrossRefGoogle Scholar
  35. 35.
    Mouzaki M, Wang AY, Bandsma R et al (2016) Bile acids and dysbiosis in nonalcoholic fatty liver disease. PLoS One 11(5):e0151829. doi: 10.1371/journal.pone.0151829 CrossRefGoogle Scholar
  36. 36.
    Xue L, He J, Gao N et al (2017) Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 7:45176. doi: 10.1038/srep45176 CrossRefGoogle Scholar
  37. 37.
    Erejuwa OO, Sulaiman SA, Wahab MAS (2014) Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci 15(3):4158–4188CrossRefGoogle Scholar
  38. 38.
    Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340CrossRefGoogle Scholar
  39. 39.
    Rajilic-Stojanovic M (2013) Function of the microbiota. Best Pract Res Clin Gastroenterol 27:5–16CrossRefGoogle Scholar
  40. 40.
    Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569. doi: 10.1126/science.aad3369 CrossRefGoogle Scholar
  41. 41.
    Lepage P, Leclerc MC, Joossens M et al (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158CrossRefGoogle Scholar
  42. 42.
    Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. doi: 10.1126/science.1177486 CrossRefGoogle Scholar
  43. 43.
    Scheithauer TPM, Dallinga-Thie GM, De Vos WM et al (2016) Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab 5:759–770CrossRefGoogle Scholar
  44. 44.
    Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. doi: 10.1038/nature11053 Google Scholar
  45. 45.
    Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484. doi: 10.1038/nature07540 CrossRefGoogle Scholar
  46. 46.
    Nadal I, Santacruz A, Marcos A et al (2009) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond) 33:758–767CrossRefGoogle Scholar
  47. 47.
    Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031CrossRefGoogle Scholar
  48. 48.
    Cantarel BL, Lombard V, Henrissat B (2012) Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7:e2874. doi: 10.1371/journal.pone.0028742 CrossRefGoogle Scholar
  49. 49.
    Boursier J, Mueller O, Barret M et al (2016) The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63(3):764–775CrossRefGoogle Scholar
  50. 50.
    Bäckhed F, Manchester JK, Semenkovich CF et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. PNAS 104(3):979–984CrossRefGoogle Scholar
  51. 51.
    Le Roy T, Llopis M, Lepage P et al (2013) Intestinal microbiota determines development of nonalcoholic fatty liver disease in mice. Gut 62:1787–1794CrossRefGoogle Scholar
  52. 52.
    Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185CrossRefGoogle Scholar
  53. 53.
    Xie G, Wang X, Liu P et al (2016) Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7(15):19355–19366. doi: 10.18632/oncotarget.8466 CrossRefGoogle Scholar
  54. 54.
    Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772CrossRefGoogle Scholar
  55. 55.
    De Minicis S, Rychlicki C, Agostinelli L et al (2014) Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 59:1738–1749CrossRefGoogle Scholar
  56. 56.
    Osman N, Adawi D, Ahrne S et al (2007) Endotoxin- and d-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig Liver Dis 39:849–856CrossRefGoogle Scholar
  57. 57.
    Xing HC, Li LJ, Xu KJ et al (2006) Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia–reperfusion injury. J Gastroenterol Hepatol 21:647–656CrossRefGoogle Scholar
  58. 58.
    Ueyama J, Nadai M, Kanazawa H et al (2005) Endotoxin from various gram-negative bacteria has differential effects on function of hepatic cytochrome P450 and drug transporters. Eur J Pharmacol 510:127–134CrossRefGoogle Scholar
  59. 59.
    Drenick EJ, Fisler J, Johnson D (1982) Hepatic steatosis after intestinal by-pass. Prevention and reversal by metronidazole irrespective of protein-calorie malnutricion. Gastroenterology 82(3):535–548Google Scholar
  60. 60.
    Shanab AA, Scully P, Crosbie O et al (2011) Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci 56(5):1524–1534CrossRefGoogle Scholar
  61. 61.
    Bures J, Cyrany J, Kohoutova D et al (2010) Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 16:2978–2990CrossRefGoogle Scholar
  62. 62.
    Corazza GR, Menozzi MG, Strocchi A et al (1990) The diagnosis of small bowel bacterial overgrowth. Reliability of jejunal culture and inadequacy of breath hydrogen testing. Gastroenterology 98(2):302–309CrossRefGoogle Scholar
  63. 63.
    Saad RJ, Chey WD (2014) Breath testing for small intestinal bacterial overgrowth: maximizing test accuracy. Clin Gastroenterol Hepatol 12:1964–1972CrossRefGoogle Scholar
  64. 64.
    Krajicek EJ, Hansel SL (2016) Small intestinal bacterial overgrowth: a primary care review. Mayo Clin Proc 91(12):1828–1833CrossRefGoogle Scholar
  65. 65.
    Khoshini R, Dai SC, Lezcano S (2008) A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig Dis Sci 53(6):1443–1454CrossRefGoogle Scholar
  66. 66.
    Erdogan A, Lee YY, Badger C et al (2014) What is the optimal threshold for an increase in hydrogen and methane levels with glucose breath test (GBT) for detection of small intestinal bacterial overgrowth (SIBO)? Gastroenterology 146(5):S532CrossRefGoogle Scholar
  67. 67.
    Lin EC, Massey BT (2016) Scintigraphy demonstrates high rate of false-positive results from glucose breath tests for small bowel bacterial overgrowth. Clin Gastroenterol Hepatol 14(2):203–208CrossRefGoogle Scholar
  68. 68.
    Zoetendal EG, Raes J, Van Den Bogert B et al (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6:1415–1426. doi: 10.1038/ismej.2011.212 CrossRefGoogle Scholar
  69. 69.
    Del Chierico F, Nobili V, Vernocchi P et al (2016) Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by na integrated meta-omics-based approach. Hepatology. doi: 10.1002/hep.28572 Google Scholar
  70. 70.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023CrossRefGoogle Scholar
  71. 71.
    Wieland A, Frank DN, Harnke B et al (2015) Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther 42:1051–1063CrossRefGoogle Scholar
  72. 72.
    Benhamed F, Denechaud FD, Lemoine M et al (2012) The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Investig 122(6):2176–2194. doi: 10.1172/JCI41636 CrossRefGoogle Scholar
  73. 73.
    Wolever TM, Brighenti F, Royall D et al (1989) Effect of rectal infusion of short chain fatty acids in human subjects. Am J Gastroenterol 84:1027–1033Google Scholar
  74. 74.
    Schwiertz A, Taras D, Schäfer K et al (2009) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195. doi: 10.1038/oby.2009.167 CrossRefGoogle Scholar
  75. 75.
    McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342CrossRefGoogle Scholar
  76. 76.
    Moreira APB, Teixeira TFS, Ferreira AB et al (2012) Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 108(5):801–809CrossRefGoogle Scholar
  77. 77.
    Lu Y, Fan C, Li P et al (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein coupled receptors and gut microbiota. Sci Rep 6:37589. doi: 10.1038/srep37589 CrossRefGoogle Scholar
  78. 78.
    Anastasovska J, Arora T, Canon GJs et al (2012) Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity (Silver Spring) 20(5):1016–1023CrossRefGoogle Scholar
  79. 79.
    Cani PD, Possemiers S, Van de Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8):1091–1103CrossRefGoogle Scholar
  80. 80.
    Delzenne NM, Cani PD, Neyrinck AM (2007) Modulation of glucagonlike peptide 1 and energy metabolism by inulin and oligofructose:experimental data. J Nutr 137(11 Suppl):2547S–2551SCrossRefGoogle Scholar
  81. 81.
    Le Poul E, Loison C, Struyf S et al (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489CrossRefGoogle Scholar
  82. 82.
    Stoddart LA, Smith NJ, Milligan G (2008) International union of pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol Rev 60:405–417CrossRefGoogle Scholar
  83. 83.
    Milligan G, Stoddart LA, Smith NJ (2009) Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3. Br J Pharmacol 158:146–153CrossRefGoogle Scholar
  84. 84.
    Samuel BS, Shaito A, Motoike T et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. PNAS 5(430):16767–16772CrossRefGoogle Scholar
  85. 85.
    Ge H, Li X, Weiszmann J et al (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149(9):4519–4526CrossRefGoogle Scholar
  86. 86.
    Dewulf EM, Ge Q, Bindels LB et al (2013) Evaluation of the relationship between GPR43 and adiposity in human. Nutr Metab 10(1):11. doi: 10.1186/1743-7075-10-11 CrossRefGoogle Scholar
  87. 87.
    Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (Lausanne) 3:111. doi: 10.3389/fendo.2012.00111 Google Scholar
  88. 88.
    Yoon JC, Chickering TW, Rosen ED et al (2000) Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20:5343–5349. doi: 10.1128/MCB.20.14.5343-5349.2000 CrossRefGoogle Scholar
  89. 89.
    Erridge C, Attina T, Spickett CM et al (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86(5):1286–1292CrossRefGoogle Scholar
  90. 90.
    Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481CrossRefGoogle Scholar
  91. 91.
    Manco M, Putignani L, Bottazzo GF (2010) Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 31(6):817–844CrossRefGoogle Scholar
  92. 92.
    Ye D, Li FY, Lam KS et al (2012) Toll-like receptor-4 mediates obesity-induced nonalcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 61(7):1058–1067CrossRefGoogle Scholar
  93. 93.
    Su GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 283:G256–G265CrossRefGoogle Scholar
  94. 94.
    Szabo G, Csak T (2012) Inflammasomes in liver diseases. J Hepatol 57(3):642–654. doi: 10.1016/j.jhep.2012.03.035 CrossRefGoogle Scholar
  95. 95.
    Alisi A, Manco M, Devito R et al (2010) Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. JPGN 50:645–649Google Scholar
  96. 96.
    Luyendyk JP, Maddox JF, Green CD et al (2004) Role of hepatic fibrin in idiosyncrasy-like liver injury from lipopolysaccharide-ranitidine coexposure in rats. Hepatology 40:1342–1351CrossRefGoogle Scholar
  97. 97.
    Targher G, Bertolini L, Scala L et al (2007) Plasma PAI-1 levels are increased in patients with nonalcoholic steatohepatitis. Diabetes Care 30:e31–e32. doi: 10.2337/dc07-0109 CrossRefGoogle Scholar
  98. 98.
    Ruiz AG, Casafont F, Crespo J et al (2007) Lipopolysaccharide-binding protein plasma levels in liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of nonalcoholic steatohepatitis. Obes Surg 17(10):1374–1380CrossRefGoogle Scholar
  99. 99.
    Yang SQ, Lin HZ, Lane MD et al (1997) Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA 94:2557–2562CrossRefGoogle Scholar
  100. 100.
    Kirsch R, Clarkson V, Verdonk RC et al (2006) Rodent nutritional model of steatohepatitis: effects of endotoxin (lipopolysaccharide) and tumor necrosis factor alpha deficiency. J Gastroenterol Hepatol 21(1 Pt 1):174–182CrossRefGoogle Scholar
  101. 101.
    Thuy S, Ladurner R, Volynets V et al (2008) Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr 138(8):1452–1455CrossRefGoogle Scholar
  102. 102.
    Harte AL, da Silva NF, Creely SJ et al (2010) Elevated endotoxin levels in nonalcoholic fatty liver disease. J Inflamm 7:15. doi: 10.1186/1476-9255-7-15 CrossRefGoogle Scholar
  103. 103.
    Brun P, Castagliuolo I, Di Leo V et al (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292:G518–G525CrossRefGoogle Scholar
  104. 104.
    Farhadi A, Gundlapalli S, Shaikh M et al (2008) Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in nonalcoholic steatohepatitis. Liver Int 28:1026–1033CrossRefGoogle Scholar
  105. 105.
    Cope K, Risby T, Diehl AM (2000) Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology 119:1340–1347CrossRefGoogle Scholar
  106. 106.
    Nair S, Cope K, Terence RH et al (2001) Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am J Gastroenterol 96(4):1200–1204CrossRefGoogle Scholar
  107. 107.
    Baker SS, Baker RD, Liu W et al (2010) Role of alcohol metabolism in nonalcoholic steatohepatitis. PLoS One 5(3):e9570. doi: 10.1371/journal.pone.0009570 CrossRefGoogle Scholar
  108. 108.
    Nosova T, Jokelainen K, Kaihovaara P et al (1996) Aldehyde dehydrogenase activity and acetate production by aerobic bacteria representing the normal flora of human large intestine. Alcohol Alcohol 31(6):555–564CrossRefGoogle Scholar
  109. 109.
    McManus IR, Contag AO, Olson RE (1960) Characterization of endogenous ethanol in the mammal. Science 131:102–103CrossRefGoogle Scholar
  110. 110.
    Baraona E, Julkunen R, Tannenbaum L et al (1986) Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology 90:103–110CrossRefGoogle Scholar
  111. 111.
    Hunnisett A, Howard J, Davies S (1990) Gut fermentation (or autobrewery) syndrome. A new clinical test with initial observations and discussion of clinical and biological implications. J Nutr Med 1:33–38. doi: 10.3109/13590849009003132 Google Scholar
  112. 112.
    Böck A, Sawers G (1996) Fermentation. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff B, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 262–282Google Scholar
  113. 113.
    Elshaghabee FMF, Bockelmann W, Meske D et al (2016) Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front Microbiol 7:47. doi: 10.3389/fmicb.2016.00047 CrossRefGoogle Scholar
  114. 114.
    Volynets V, Küper MA, Strahl S et al (2012) Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 57:1932–1941CrossRefGoogle Scholar
  115. 115.
    Collins MD, Samelis J, Metaxopoulos J et al (1993) Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603. doi: 10.1111/j.1365-2672.1993.tb01600.x CrossRefGoogle Scholar
  116. 116.
    Fusco V, Quero GM, Cho G-S et al (2015) The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 6:155. doi: 10.3389/fmicb.2015.00155 CrossRefGoogle Scholar
  117. 117.
    Buckel W (1999) Anaerobic energy metabolism. In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Georg Thieme Verlag, Stuttgart, pp 278–326Google Scholar
  118. 118.
    Lieber C (1991) Hepatic, metabolic and toxic effect of ethanol. Alcohol Clin Exp Res 15:573–592CrossRefGoogle Scholar
  119. 119.
    Gustot T, Lemmers A, Moreno C et al (2006) Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43:989–1000CrossRefGoogle Scholar
  120. 120.
    Forsyth CB, Tang Y, Shaikh M et al (2011) Role of snail activation in alcohol-induced iNOS-mediated disruption of intestinal epithelial cell permeability. Alcohol Clin Exp Res 35(9):1635–1643Google Scholar
  121. 121.
    Yuan L, Bambha K (2015) Bile acid receptors and nonalcoholic fatty liver disease. World J Hepatol 7(28):2811–2818CrossRefGoogle Scholar
  122. 122.
    Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259CrossRefGoogle Scholar
  123. 123.
    Dawson PA, Karpen SJ (2015) Intestinal transport and metabolism of bile acids. J Lipid Res 56:1085–1099CrossRefGoogle Scholar
  124. 124.
    Copple BL, Li T (2016) Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 104:9–21. doi: 10.1016/j.phrs.2015.12.007 CrossRefGoogle Scholar
  125. 125.
    Schaap FG, Trauner M, Jansen PLM (2013) Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. doi: 10.1038/nrgastro.2013.151 (Advance online publication) Google Scholar
  126. 126.
    Claudel T, Staels B, Kuipers F (2005) The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 25:2020–2031CrossRefGoogle Scholar
  127. 127.
    Thomas C, Gioiello A, Noriega L et al (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10(3):167–177CrossRefGoogle Scholar
  128. 128.
    Sayin SI, Wahlström A, Felin J et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235CrossRefGoogle Scholar
  129. 129.
    Ferslew BC, Xie G, Johnston CK et al (2015) Altered bile acid metabolome in patients with nonalcoholicv steatohepatitis. Dig Dis Sci 60(11):3318–3328. doi: 10.1007/s10620-015-3776-8 CrossRefGoogle Scholar
  130. 130.
    Aranha MM, Cortez-Pinto H, Costa A et al (2008) Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 20(6):519–525CrossRefGoogle Scholar
  131. 131.
    Kalhan S, Guo L, Edmison J et al (2011) Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 60(3):404–413CrossRefGoogle Scholar
  132. 132.
    Faubion WA, Guicciardi ME, Miyoshi H et al (1999) Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Faz. J Clin Invest 103:137–145CrossRefGoogle Scholar
  133. 133.
    Parlesak A, Schaeckeler S, Moser L et al (2007) Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production. Crit Care Med 35:2367–2374CrossRefGoogle Scholar
  134. 134.
    Lorenzo-Zúñiga V, Bartolí R, Planas R et al (2003) Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37(3):551–557. doi: 10.1053/jhep.2003.50116 CrossRefGoogle Scholar
  135. 135.
    Sherriff JL, O’Sullivan TA, Properzi C et al (2016) Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv Nutr 7(1):5–13CrossRefGoogle Scholar
  136. 136.
    Y-m Chen, Liu Y, R-f Zhou et al (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with nonalcoholic fatty liver disease in adults. Sci Rep 6:19076. doi: 10.1038/srep19076 CrossRefGoogle Scholar
  137. 137.
    Gao X, Liu X, Xu J et al (2014) Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng 118:476–481CrossRefGoogle Scholar
  138. 138.
    Shih DM, Wang Z, Lee R et al (2015) Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 56:22–37CrossRefGoogle Scholar
  139. 139.
    Raubenheimer PJ, Nyirenda MJ, Walker BR (2006) A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 55:2015–2020CrossRefGoogle Scholar
  140. 140.
    Pelz S, Stock P, Brückner S et al (2012) A methionine-choline-deficient diet elicits NASH in the immunodeficient mouse featuring a model for hepatic cell transplantation. Exp Cell Res 318:276–287. doi: 10.1016/j.yexcr.2011.11.005 CrossRefGoogle Scholar
  141. 141.
    Guerrerio AL, Colvin RM, Schwartz AK et al (2012) Choline intake in a large cohort of patients with nonalcoholic fatty liver disease. Am J Clin Nutr 95:892–900CrossRefGoogle Scholar
  142. 142.
    Spencer MD, Hamp TJ, Reid RW et al (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140(3):976–986CrossRefGoogle Scholar
  143. 143.
    Walsh CJ, Guinane CM, O’Toole PW et al (2014) Beneficial modulation of the gut microbiota. FEBS Lett. doi: 10.1016/j.febslet.2014.03.035 Google Scholar
  144. 144.
    Fava F, Gitau R, Griffin BA et al (2013) The type and quantity of dietary fat and carbohydrate alter fecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes 37:216–223CrossRefGoogle Scholar
  145. 145.
    Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113:S1–S5CrossRefGoogle Scholar
  146. 146.
    National Institute for Health and Care Excellence (2016) Nonalcoholic fatty liver disease: assessment and management. NICE Guideline NG49, Methods, evidence and recommendations. ISBN: 978-1-4731-1955-0.
  147. 147.
    Schwenger KJP, Allard JP (2014) Clinical approaches to nonalcoholic fatty liver disease. World J Gastroenterol 20(7):1712–1723CrossRefGoogle Scholar
  148. 148.
    Zhang C, Li S, Yang L et al (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:2163. doi: 10.1038/ncomms3163 Google Scholar
  149. 149.
    Santacruz A, Marcos A, Wärnberg J et al (2009) Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17:1906–1915CrossRefGoogle Scholar
  150. 150.
    Kim MS, Hwang SS, Park EJ et al (2013) Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep 5:765–775CrossRefGoogle Scholar
  151. 151.
    Cotillard A, Kennedy SP, Kong LC et al (2013) Dietary intervention impact on gut microbial gene richness. Nature 29(500):585–588CrossRefGoogle Scholar
  152. 152.
    Breusing N, Lagerpusch M, Engstler AJ et al (2017) Influence of energy balance and glycemic index on metabolic endotoxemia in healthy men. J Am Coll Nutr 0(0):1–8. doi: 10.1080/07315724.2016.1156036 Google Scholar
  153. 153.
    Obregon-Tito AJ, Tito RY, Metcalf JL et al (2015) Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 6:6505CrossRefGoogle Scholar
  154. 154.
    Amato KR, Yeoman CJ, Cerda G et al (2015) Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome 3:53. doi: 10.1186/s40168-015-0120-7 CrossRefGoogle Scholar
  155. 155.
    Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108CrossRefGoogle Scholar
  156. 156.
    De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107(33):14691–14696CrossRefGoogle Scholar
  157. 157.
    Pendyala S, Walker JM, Holt PR (2012) A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142(5):1100–1101.e2. doi: 10.1053/j.gastro.2012.01.034 CrossRefGoogle Scholar
  158. 158.
    De Wit N, Derrien M, Bosch-Vermeulen H et al (2012) Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol 303:589–599CrossRefGoogle Scholar
  159. 159.
    Caesar R, Tremaroli V, Kovatcheva-Datchary P et al (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT Inflammation through TLR signaling. Cell Metab 22(4):658–668CrossRefGoogle Scholar
  160. 160.
    Brinkworth GD, Noakes M, Clifton PM et al (2009) Comparative effects of very low-carbohydrate, high-fat and highcarbohydrate, low-fat weight-loss diets on bowel habit and fecal short-chain fatty acids and bacterial populations. Br J Nutr 101:1493–1502CrossRefGoogle Scholar
  161. 161.
    Duncan SH, Belenguer A, Holtrop G et al (2007) Reduced dietary intake of carbohydrate, by obese subjects, results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078CrossRefGoogle Scholar
  162. 162.
    Lopez-Legarrea P, Fuller NR, Zulet MA et al (2014) The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac J Clin Nutr 23(3):360–368Google Scholar
  163. 163.
    Hooda S, Boler BMV, Kerr KR et al (2013) The gut microbiome of kittens is affected by dietary protein: carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br J Nutr 109(9):1637–1646CrossRefGoogle Scholar
  164. 164.
    Smith EA, Macfarlane GT (1996) Studies on amine production in the human colon: enumeration of amine forming bacteria and physiological effects of carbohydrate and pH. Anaerobe 2(5):285–297CrossRefGoogle Scholar
  165. 165.
    Russell WR, Gratz SW, Duncan SH et al (2011) Highprotein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93(5):1062–1072CrossRefGoogle Scholar
  166. 166.
    Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383CrossRefGoogle Scholar
  167. 167.
    Reddy BS, Weisburger JH, Wynder EL (1995) Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man. J Nutr 105(7):878–884CrossRefGoogle Scholar
  168. 168.
    Matijasic BB, Obermajer T, Lipoglavsek L et al (2014) Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr 53(4):1051–1064CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fabiana de Faria Ghetti
    • 1
    • 4
    Email author return OK on get
  • Daiane Gonçalves Oliveira
    • 1
  • Juliano Machado de Oliveira
    • 1
  • Lincoln Eduardo Villela Vieira de Castro Ferreira
    • 1
  • Dionéia Evangelista Cesar
    • 2
  • Ana Paula Boroni Moreira
    • 3
  1. 1.Universitary Hospital and School of MedicineFederal University of Juiz de ForaJuiz de ForaBrazil
  2. 2.Department of BiologyFederal University of Juiz de ForaJuiz de ForaBrazil
  3. 3.Department of NutritionFederal University of Juiz de ForaJuiz de ForaBrazil
  4. 4.Unidade de Nutrição ClínicaHospital UniversitárioJuiz de ForaBrazil

Personalised recommendations