Skip to main content

Association between organic food consumption and metabolic syndrome: cross-sectional results from the NutriNet-Santé study



Metabolic syndrome (MetS), a multicomponent condition, is a cardiovascular disease predictor. Although exposure to agricultural pesticides has been suggested as a potential contributor to the rising rates of obesity, type 2 diabetes, and other features of metabolic disorders, no studies have focused on the association between consumption of organic food (produced without synthetic pesticides) and MetS. We aimed to investigate the cross-sectional association between organic food consumption and MetS in French adults to determine whether it would be worth conducting further studies, particularly large prospective and randomised trials.


A total of 8174 participants from the NutriNet-Santé study who attended a clinical visit and completed an organic food frequency questionnaire were included in this cross-sectional analysis. We evaluated the association between the proportion of organic food in the diet (overall and by food group) and MetS using Poisson regression models while adjusting for potential confounders.


Higher organic food consumption was negatively associated with the prevalence of MetS: adjusted prevalence ratio was 0.69 (95% CI 0.61, 0.78) when comparing the third tertile of proportion of organic food in the diet with the first one (p value <0.0001). Higher consumption of organic plant-based foods was also related to a lower probability of having MetS. In addition, when stratifying by lifestyle factors (nutritional quality of the diet, smoking status, and physical activity), a significant negative association was detected in each subgroup (p values <0.05), except among smokers.


Our results showed that a higher organic food consumption was associated with a lower probability of having MetS. Additional prospective studies and randomised trials are required to ascertain the relationship between organic food consumption and metabolic disorders.

This is a preview of subscription content, access via your institution.

Fig. 1



Body mass index


Confidence intervals


National commission on informatics and liberty


Diastolic blood pressure


European food safety authority


French National Nutrition and Health Survey


High-density protein


Institutional Review Board of the French Institute for Health and Medical Research


French National Institute of Statistics and Economic Studies


International Physical Activity Questionnaire


Low-density protein


Metabolic syndrome


Modified Programme National Nutrition Guideline Score


Organic Food Frequency Questionnaire


Persistent organic pollutants


Polyunsaturated fatty acids


Prevalence ratios


Systolic blood pressure


  1. 1.

    Galassi A, Reynolds K, He J (2006) Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med 119:812–819. doi:10.1016/j.amjmed.2006.02.031

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Gami AS, Witt BJ, Howard DE et al (2007) Metabolic syndrome and risk of incident cardiovascular events and death. J Am Coll Cardiol 49:403–414. doi:10.1016/j.jacc.2006.09.032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wang J, Ruotsalainen S, Moilanen L et al (2007) The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. Eur Heart J 28:857–864. doi:10.1093/eurheartj/ehl524

    Article  PubMed  Google Scholar 

  4. 4.

    Benetos A, Thomas F, Pannier B et al (2008) All-cause and cardiovascular mortality using the different definitions of metabolic syndrome. Am J Cardiol 102:188–191. doi:10.1016/j.amjcard.2008.03.037

    Article  PubMed  Google Scholar 

  5. 5.

    Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645. doi:10.1161/CIRCULATIONAHA.109.192644

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28:629–636. doi:10.1161/ATVBAHA.107.151092

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Vernay M, Salanave B, de Peretti C et al (2013) Metabolic syndrome and socioeconomic status in France: the French Nutrition and Health Survey (ENNS, 2006–2007). Int J Public Health 58:855–864. doi:10.1007/s00038-013-0501-2

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Nicklas TA, O’Neil CE, Fulgoni VL (2012) Diet quality is inversely related to cardiovascular risk factors in adults. J Nutr 142:2112–2118. doi:10.3945/jn.112.164889

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lassale C, Galan P, Julia C et al (2013) Association between adherence to nutritional guidelines, the metabolic syndrome and adiposity markers in a French adult general population. PLoS One 8:e76349. doi:10.1371/journal.pone.0076349

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kesse-Guyot E, Ahluwalia N, Lassale C et al (2013) Adherence to Mediterranean diet reduces the risk of metabolic syndrome: a 6-year prospective study. Nutr Metab Cardiovasc Dis 23:677–683. doi:10.1016/j.numecd.2012.02.005

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sabaté J, Wien M (2015) A perspective on vegetarian dietary patterns and risk of metabolic syndrome. Br J Nutr 113:S136–S143. doi:10.1017/S0007114514004139

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Veissi M, Anari R, Amani R et al (2016) Mediterranean diet and metabolic syndrome prevalence in type 2 diabetes patients in Ahvaz, southwest of Iran. Diabetes Metab Syndr Clin Res Rev 10:S26–S29. doi:10.1016/j.dsx.2016.01.015

    Article  Google Scholar 

  13. 13.

    He D, Xi B, Xue J et al (2014) Association between leisure time physical activity and metabolic syndrome: a meta-analysis of prospective cohort studies. Endocrine 46:231–240. doi:10.1007/s12020-013-0110-0

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Weitzman M (2005) Tobacco smoke exposure is associated with the metabolic syndrome in adolescents. Circulation 112:862–869. doi:10.1161/CIRCULATIONAHA.104.520650

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Turner-McGrievy G, Harris M (2014) Key elements of plant-based diets associated with reduced risk of metabolic syndrome. Curr Diab Rep. doi:10.1007/s11892-014-0524-y

    Article  PubMed  Google Scholar 

  16. 16.

    Aertsens J, Verbeke W, Mondelaers K, Van Huylenbroeck G (2009) Personal determinants of organic food consumption: a review. Br Food J 111:1140–1167. doi:10.1108/00070700910992961

    Article  Google Scholar 

  17. 17.

    Dickson-Spillmann M, Siegrist M, Keller C (2011) Attitudes toward chemicals are associated with preference for natural food. Food Qual Prefer 22:149–156. doi:10.1016/j.foodqual.2010.09.001

    Article  Google Scholar 

  18. 18.

    Michaelidou N, Hassan LM (2008) The role of health consciousness, food safety concern and ethical identity on attitudes and intentions towards organic food. Int J Consum Stud 32:163–170. doi:10.1111/j.1470-6431.2007.00619.x

    Article  Google Scholar 

  19. 19.

    Agence Bio/CSA (2016) Baromètre de consommation et de perception des produits biologiques en France, 13ème édition. Accessed 11 Aug 2016

  20. 20.

    Regulation C (2007) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Off J Eur Union L 189(1):1–23

    Google Scholar 

  21. 21.

    European Food Safety Authority (2015) The 2013 European Union report on pesticide residues in food: the 2013 European Union report on pesticide residues. EFSA J 13:4038. doi:10.2903/j.efsa.2015.4038

    CAS  Article  Google Scholar 

  22. 22.

    Oates L, Cohen M, Braun L et al (2014) Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ Res 132:105–111. doi:10.1016/j.envres.2014.03.021

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Curl CL, Fenske RA, Elgethun K (2002) Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ Health Perspect 111:377–382. doi:10.1289/ehp.5754

    CAS  Article  Google Scholar 

  24. 24.

    Bradman A, Quirós-Alcalá L, Castorina R et al (2015) Effect of organic diet intervention on pesticide exposures in young children living in low-income urban and agricultural communities. Environ Health Perspect. doi:10.1289/ehp.1408660

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lu C, Toepel K, Irish R et al (2006) Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect 114:260–263. doi:10.1289/ehp.8418

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Barański M, Średnicka-Tober D, Volakakis N et al (2014) Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. doi:10.1017/S0007114514001366

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Brantsæter AL, Ydersbond TA, Hoppin JA et al (2017) Organic food in the diet: exposure and health implications. Annu Rev Public Health 38:295–313. doi:10.1146/annurev-publhealth-031816-044437

    Article  PubMed  Google Scholar 

  28. 28.

    Mie A, Kesse-Guyot E, Rembiałkowska E et al (2016) Human health implications of organic food and organic agriculture. Report No.: EPRS_STU(2016)581922

  29. 29.

    Smith-Spangler C, Brandeau ML, Hunter GE et al (2012) Are organic foods safer or healthier than conventional alternatives? A systematic review. Ann Intern Med 157:348–366. doi:10.7326/0003-4819-157-5-201209040-00007

    Article  PubMed  Google Scholar 

  30. 30.

    Brandt K, Leifert C, Sanderson R, Seal CJ (2011) Agroecosystem management and nutritional quality of plant foods: the case of organic fruits and vegetables. Crit Rev Plant Sci 30:177–197. doi:10.1080/07352689.2011.554417

    CAS  Article  Google Scholar 

  31. 31.

    Palupi E, Jayanegara A, Ploeger A, Kahl J (2012) Comparison of nutritional quality between conventional and organic dairy products: a meta-analysis. J Sci Food Agric 92:2774–2781. doi:10.1002/jsfa.5639

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Średnicka-Tober D, Barański M, Seal CJ et al (2016) Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta- and redundancy analyses. Br J Nutr 115:1043–1060. doi:10.1017/S0007114516000349

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lairon D (2010) Nutritional quality and safety of organic food. A review. Agron Sustain Dev 30:33–41. doi:10.1051/agro/2009019

    CAS  Article  Google Scholar 

  34. 34.

    Evangelou E, Ntritsos G, Chondrogiorgi M et al (2016) Exposure to pesticides and diabetes: a systematic review and meta-analysis. Environ Int 91:60–68. doi:10.1016/j.envint.2016.02.013

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Nicolopoulou-Stamati P, Maipas S, Kotampasi C et al (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health. doi:10.3389/fpubh.2016.00148

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kim K-H, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. doi:10.1016/j.scitotenv.2016.09.009

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Mostafalou S, Abdollahi M (2017) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91:549–599. doi:10.1007/s00204-016-1849-x

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Collectif INSERM (2013) Pesticides: Effets sur la santé, une expertise collective de l’Inserm. In: Salle Presse Inserm. Accessed 21 Aug 2016

  39. 39.

    Mnif W, Hassine AIH, Bouaziz A et al (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8:2265–2303. doi:10.3390/ijerph8062265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mozaffarian D, Wu JHY (2011) Omega-3 fatty acids and cardiovascular disease. J Am Coll Cardiol 58:2047–2067. doi:10.1016/j.jacc.2011.06.063

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Pan A, Chen M, Chowdhury R et al (2012) Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 96:1262–1273. doi:10.3945/ajcn.112.044040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Del Rio D, Rodriguez-Mateos A, Spencer JPE et al (2013) Dietary (Poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892. doi:10.1089/ars.2012.4581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Solenkova NV, Newman JD, Berger JS et al (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168:812–822. doi:10.1016/j.ahj.2014.07.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hord NG, Conley MN (2017) Regulation of dietary nitrate and nitrite: balancing essential physiological roles with potential health risks. In: Bryan NS, Loscalzo J (eds) Nitrite Nitrate Hum. Health Dis. Springer International Publishing, Cham, pp 153–162

    Chapter  Google Scholar 

  45. 45.

    Ahluwalia A, Gladwin M, Coleman GD et al (2016) Dietary nitrate and the epidemiology of cardiovascular disease: report From a National Heart, Lung, and Blood Institute Workshop. J Am Heart Assoc 5:e003402. doi:10.1161/JAHA.116.003402

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kesse-Guyot E, Péneau S, Méjean C et al (2013) Profiles of organic food consumers in a large sample of French adults: results from the Nutrinet-Santé Cohort Study. PLoS One 8:e76998. doi:10.1371/journal.pone.0076998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Eisinger-Watzl M, Wittig F, Heuer T, Hoffmann I (2015) Customers purchasing organic food—do they live healthier? Results of the German National Nutrition Survey II. Eur J Nutr Food Saf 5:59–71. doi:10.9734/EJNFS/2015/12734

    Article  Google Scholar 

  48. 48.

    Kesse-Guyot E, Baudry J, Assmann KE et al (2017) Prospective association between consumption frequency of organic food and body weight change, risk of overweight or obesity: Results from the NutriNet-Santé Study. Br. J, Nutr

    Google Scholar 

  49. 49.

    Hercberg S, Castetbon K, Czernichow S et al (2010) The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10:242. doi:10.1186/1471-2458-10-242

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kesse-Guyot E, Castetbon K, Touvier M et al (2010) Relative validity and reproducibility of a food frequency questionnaire designed for French adults. Ann Nutr Metab 57:153–162. doi:10.1159/000321680

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Baudry J, Méjean C, Allès B et al (2015) Contribution of organic food to the diet in a large sample of French adults (the NutriNet-Santé Cohort Study). Nutrients 7:8615–8632. doi:10.3390/nu7105417

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    NutriNet-Santé coordination (2013) Table de composition des aliments - Etude NutriNet-Santé. Economica, Paris

  53. 53.

    Baudry J, Allès B, Péneau S et al (2016) Dietary intakes and diet quality according to levels of organic food consumption by French adults: cross-sectional findings from the NutriNet-Santé Cohort Study. Public Health Nutr. doi:10.1017/S1368980016002718

    Article  PubMed  Google Scholar 

  54. 54.

    Hagströmer M, Oja P, Sjöström M (2006) The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 9:755–762

    Article  Google Scholar 

  55. 55.

    Craig CL, Marshall AL, Sjöström M et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395. doi:10.1249/01.MSS.0000078924.61453.FB

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    INSEE (2009) Definitions and methods. Accessed 21 Aug 2016  

  57. 57.

    Planella T, Cortés M, Martínez-Brú C et al (1997) Calculation of LDL-cholesterol by using apolipoprotein B for classification of nonchylomicronemic dyslipemia. Clin Chem 43:808–815

    CAS  PubMed  Google Scholar 

  58. 58.

    Zhang J, Yu KF (1998) What’s the relative risk?: a method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690. doi:10.1001/jama.280.19.1690

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Zou G (2004) A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 159:702–706. doi:10.1093/aje/kwh090

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Curl CL, Beresford SAA, Fenske RA et al (2015) Estimating pesticide exposure from dietary intake and organic food choices: the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Perspect. doi:10.1289/ehp.1408197

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Wang J, Zhu Y, Cai X et al (2011) Abnormal glucose regulation in pyrethroid pesticide factory workers. Chemosphere 82:1080–1082. doi:10.1016/j.chemosphere.2010.10.065

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Montgomery MP, Kamel F, Saldana TM et al (2008) Incident diabetes and pesticide exposure among licensed pesticide applicators: agricultural Health Study, 1993–2003. Am J Epidemiol 167:1235–1246. doi:10.1093/aje/kwn028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. doi:10.1016/j.taap.2013.01.025

    CAS  Article  Google Scholar 

  64. 64.

    Androutsopoulos VP, Hernandez AF, Liesivuori J, Tsatsakis AM (2013) A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 307:89–94. doi:10.1016/j.tox.2012.09.011

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Średnicka-Tober D, Barański M, Gromadzka-Ostrowska J et al (2013) Effect of crop protection and fertilization regimes used in organic and conventional production systems on feed composition and physiological parameters in rats. J Agric Food Chem 61:1017–1029. doi:10.1021/jf303978n

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Średnicka-Tober D, Barański M, Seal C et al (2016) Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. Br J Nutr 115:994–1011. doi:10.1017/S0007114515005073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Andreeva V, Salanave B, Castetbon K et al (2015) Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French Census data: the issue of volunteer bias revisited. J Epidemiol Community Health. doi:10.1136/jech-2014-205263

    Article  PubMed  Google Scholar 

  68. 68.

    Andreeva VA, Deschamps V, Salanave B et al (2016) Comparison of dietary intakes between a large online Cohort Study (Etude NutriNet-Santé) and a nationally representative cross-sectional Study (Etude Nationale Nutrition Santé) in France: addressing the Issue of Generalizability in E-Epidemiology. Am J Epidemiol 184:660–669. doi:10.1093/aje/kww016

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank all the people who helped carry out the NutriNet-Santé study and all dedicated and conscientious volunteers. We especially thank Younes Esseddik, Paul Flanzy, Nathalie Arnault, Fabien Szabo, Laurent Bourhis, and Cédric Agaesse.

Author information




SH, PG, DL, and EKG conceived and designed research; JB performed the statistical analysis and wrote the article; JB, HL, SA, CJ, BA, SH, MT, DL, PG, and EKG were involved in revising the work critically for important intellectual content; and JB had primary responsibility for final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Julia Baudry.

Ethics declarations

Conflict of interest

None of the authors declares any conflicts of interest.


The BioNutriNet project was supported by the French National Research Agency (Agence Nationale de la Recherche) in the context of the 2013 Programme de Recherche Systèmes Alimentaires Durables (ANR-13-ALID-0001). The NutriNet-Santé cohort study is funded by the following public institutions: Ministère de la Santé, Santé Publique France, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Conservatoire National des Arts et Métiers (CNAM), and Paris 13 University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baudry, J., Lelong, H., Adriouch, S. et al. Association between organic food consumption and metabolic syndrome: cross-sectional results from the NutriNet-Santé study. Eur J Nutr 57, 2477–2488 (2018).

Download citation


  • Metabolic syndrome
  • Metabolic traits
  • Organic food consumption
  • Dietary pattern