Skip to main content

Dietary total antioxidant capacity is inversely associated with all-cause and cardiovascular disease death of US adults

Abstract

Purpose

Although evidence strongly supports that antioxidant-rich diets reduce risk of chronic disease and mortality, findings from the previous studies on the effect of individual antioxidants on mortality have been inconsistent. The aim of this study was to assess the relationship between dietary total antioxidant capacity (TAC) and all-cause and disease-specific mortality in a representative sample of the US population.

Methods

A total of 23,595 US adults aged 30 years and older in NHANES 1988–1994 and 1999–2004 were selected for this study. Dietary TAC was calculated from 1-day 24-h diet recall data at baseline and all-cause, cancer and cardiovascular disease (CVD) mortality was assessed through December 31, 2011.

Results

During a mean follow-up of 13 years, deaths from all-cause, cancer and CVD were 7157, 1578, and 2155, respectively. Using cause-specific Cox proportional hazards models, inverse associations and linear trends were observed between dietary TAC and all-cause mortality [highest quartile (Q4) versus Q1 ref. HR 0.78; 95% CI 0.71–0.86], cancer mortality (Q4 versus Q1 ref. HR 0.75; 95% CI 0.60–0.93), and CVD mortality (Q4 versus Q1 ref. HR 0.83; 95% CI 0.69–0.99), respectively, after adjusting for age, sex, ethnicity, and total energy intake. The inverse association and linear trend still remained between dietary TAC and all-cause mortality (Q4 versus Q1 ref. HR 0.79; 95% CI 0.71–0.87) and CVD mortality (Q4 versus Q1 ref. HR 0.74; 95% CI 0.61–0.89) when further adjusted for relevant covariates.

Conclusions

These findings support that antioxidant-rich diets are beneficial to reducing risk of death from all-cause and CVD.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Yoon PW, Bastian B, Anderson RN, Collins JL, Jaffe HW, Centers for Disease Control and Prevention (2014) Potentially preventable deaths from the five leading causes of death–United States, 2008–2010. Morb Mortal Wkly Rep 63:369–374

    Google Scholar 

  2. 2.

    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    CAS  Article  Google Scholar 

  3. 3.

    Bielli A, Scioli MG, Mazzaglia D, Doldo E, Orlandi A (2015) Antioxidants and vascular health. Life Sci 143:209–216

    CAS  Article  Google Scholar 

  4. 4.

    Leenders M, Boshuizen HC, Ferrari P, Siersema PD, Overvad K, Tjonneland A, Olsen A, Boutron-Ruault MC, Dossus L, Dartois L et al (2014) Fruit and vegetable intake and cause-specific mortality in the EPIC study. Eur J Epidemiol 29:639–652

    CAS  Article  Google Scholar 

  5. 5.

    Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349:g4490

    Article  Google Scholar 

  6. 6.

    Stepaniak U, Micek A, Grosso G, Stefler D, Topor-Madry R, Kubinova R, Malyutina S, Peasey A, Pikhart H, Nikitin Y, Bobak M, Pajak A (2016) Antioxidant vitamin intake and mortality in three Central and Eastern European urban populations: the HAPIEE study. Eur J Nutr 55:547–560

    CAS  Article  Google Scholar 

  7. 7.

    Kubota Y, Iso H, Date C, Kikuchi S, Watanabe Y, Wada Y, Inaba Y, Tamakoshi A, Group JS (2011) Dietary intakes of antioxidant vitamins and mortality from cardiovascular disease: the Japan Collaborative Cohort Study (JACC) study. Stroke 42:1665–1672

    CAS  Article  Google Scholar 

  8. 8.

    Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA, Jacobs DR Jr (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909

    CAS  Article  Google Scholar 

  9. 9.

    Mursu J, Voutilainen S, Nurmi T, Tuomainen TP, Kurl S, Salonen JT (2008) Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br J Nutr 100:890–895

    CAS  Article  Google Scholar 

  10. 10.

    Zamora-Ros R, Jimenez C, Cleries R, Agudo A, Sanchez MJ, Sanchez-Cantalejo E, Molina-Montes E, Navarro C, Chirlaque MD, Maria Huerta J et al (2013) Dietary flavonoid and lignan intake and mortality in a Spanish cohort. Epidemiology 24:726–733

    Article  Google Scholar 

  11. 11.

    Klipstein-Grobusch K, Geleijnse JM, den Breeijen JH, Boeing H, Hofman A, Grobbee DE, Witteman JC (1999) Dietary antioxidants and risk of myocardial infarction in the elderly: the Rotterdam Study. Am J Clin Nutr 69:261–266

    CAS  Article  Google Scholar 

  12. 12.

    Buijsse B, Feskens EJ, Kwape L, Kok FJ, Kromhout D (2008) Both alpha- and beta-carotene, but not tocopherols and vitamin C, are inversely related to 15-year cardiovascular mortality in Dutch elderly men. J Nutr 138:344–350

    CAS  Article  Google Scholar 

  13. 13.

    Dietrich M, Jacques PF, Pencina MJ, Lanier K, Keyes MJ, Kaur G, Wolf PA, D’Agostino RB, Vasan RS (2009) Vitamin E supplement use and the incidence of cardiovascular disease and all-cause mortality in the Framingham Heart Study: does the underlying health status play a role? Atherosclerosis 205:549–553

    CAS  Article  Google Scholar 

  14. 14.

    Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 9:145–152

    CAS  Article  Google Scholar 

  15. 15.

    Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA (2009) Dietary total antioxidant capacity: a novel indicator of diet quality in healthy young adults. J Am Coll Nutr 28:648–656

    Article  Google Scholar 

  16. 16.

    Henriquez-Sanchez P, Sanchez-Villegas A, Ruano-Rodriguez C, Gea A, Lamuela-Raventos RM, Estruch R, Salas-Salvado J, Covas MI, Corella D, Schroder H et al (2016) Dietary total antioxidant capacity and mortality in the PREDIMED study. Eur J Nutr 55:227–236

    CAS  Article  Google Scholar 

  17. 17.

    Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey III (1988-1994). Available at: https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx. Accessed 5 Aug 2017

  18. 18.

    Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (1999- 2000). Available at: https://wwwn.cdc.gov/nchs/nhanes/default.aspx. Accessed 5 Aug 2017

  19. 19.

    Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (2001- 2004). Available at: https://wwwn.cdc.gov/nchs/nhanes/default.aspx. Accessed 5 Aug 2017

  20. 20.

    Bhagwat S, Haytowitz DB, Holden JM (2014) USDA database for the flavonoid content of selected foods, release 3.1. Available at: http://www.ars.usda.gov/nutrientdata/flav. Accessed 5 Aug 2017

  21. 21.

    Bhagwat S, Haytowitz DB, Holden JM (2008) USDA database for the isoflavone content of selected foods, release 2.0. Available at: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrientdata-laboratory/docs/usda-database-for-the-isoflavone-content-of-selected-foods-release-20. Accessed 5 Aug 2017

  22. 22.

    Bhagwat, S., Haytowitz, DB, and Holden, JM. (2004) USDA Database for the Proanthocyanidin Content of Selected Foods. Available at: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrientdata-laboratory/docs/usda-database-for-the-proanthocyanidin-content-of-selected-foods-2004. Accessed 5 Aug 2017

  23. 23.

    Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of US adults. J Nutr 137:1244–1252

    CAS  Article  Google Scholar 

  24. 24.

    Kim K, Vance TM, Chun OK (2016) Estimated intake and major food sources of flavonoids among US adults: changes between 1999–2002 and 2007–2010 in NHANES. Eur J Nutr 55:833–843

    CAS  Article  Google Scholar 

  25. 25.

    Floegel A, Kim DO, Chung SJ, Song WO, Fernandez ML, Bruno RS, Koo SI, Chun OK (2010) Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int J Food Sci Nutr 61:600–623

    CAS  Article  Google Scholar 

  26. 26.

    Sinha SK, Ghaskadbi SS (2013) Thearubigins rich black tea fraction reveals strong antioxidant activity. Int J Green Pharm 7:336–344

    Article  Google Scholar 

  27. 27.

    Centers for Disease Control and Prevention. National Center for Health Statistics: NCHS data linked to mortality files. http://www.cdc.gov/nchs/data_access/data_linkage/mortality/data_files_data_dictionaries.htm. Accessed April 28, 2015

  28. 28.

    World Health Organization (1992) International statistical classification of disease and related health problems, tenth revision (ICD-10). World Health Organization, Geneva

    Google Scholar 

  29. 29.

    Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4):1220S–1228S (discussion 9S–31S)

    CAS  Article  Google Scholar 

  30. 30.

    Ratnasinghe LD, Graubard BI, Kahle L, Tangrea JA, Taylor PR, Hawk E (2004) Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Res 24:3177–3184

    PubMed  Google Scholar 

  31. 31.

    Coughlin SS, Calle EE, Patel AV, Thun MJ (2000) Predictors of pancreatic cancer mortality among a large cohort of United States adults. Cancer Causes Control 11:915–923

    CAS  Article  Google Scholar 

  32. 32.

    Beydoun MA, Beydoun HA, Mode N, Dore GA, Canas JA, Eid SM, Zonderman AB (2016) Racial disparities in adult all-cause and cause-specific mortality among us adults: mediating and moderating factors. BMC Public Health 16:1113

    CAS  Article  Google Scholar 

  33. 33.

    Keum N, Giovannucci E (2014) Vitamin D supplements and cancer incidence and mortality: a meta-analysis. Br J Cancer 111:976–980

    CAS  Article  Google Scholar 

  34. 34.

    Patel SA, Winkel M, Ali MK, Narayan KM, Mehta NK (2015) Cardiovascular mortality associated with five leading risk factors: national and state preventable fractions estimated from survey data. Ann Intern Med 163:245–253

    Article  Google Scholar 

  35. 35.

    Sempos CT, Rehm J, Wu T, Crespo CJ, Trevisan M (2003) Average volume of alcohol consumption and all-cause mortality in African Americans: the NHEFS cohort. Alcohol Clin Exp Res 27:88–92

    Article  Google Scholar 

  36. 36.

    Lantz PM, House JS, Lepkowski JM, Williams DR, Mero RP, Chen J (1998) Socioeconomic factors, health behaviors, and mortality: results from a nationally representative prospective study of US adults. JAMA 279:1703–1708

    CAS  Article  Google Scholar 

  37. 37.

    Solfrizzi V, D’Introno A, Colacicco AM, Capurso C, Palasciano R, Capurso S, Torres F, Capurso A, Panza F (2005) Unsaturated fatty acids intake and all-causes mortality: a 8.5-year follow-up of the Italian Longitudinal Study on Aging. Exp Gerontol 40:335–343

    CAS  Article  Google Scholar 

  38. 38.

    Bastide N, Dartois L, Dyevre V, Dossus L, Fagherazzi G, Serafini M, Boutron-Ruault MC (2017) Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr 56:1233–1243

    CAS  Article  Google Scholar 

  39. 39.

    Kim K, Vance TM, Chun OK (2016) Greater total antioxidant capacity from diet and supplements is associated with a less atherogenic blood profile in US adults. Nutrients 8(1):15

    Article  Google Scholar 

  40. 40.

    Yang M, Chung SJ, Floegel A, Song WO, Koo SI, Chun OK (2013) Dietary antioxidant capacity is associated with improved serum antioxidant status and decreased serum C-reactive protein and plasma homocysteine concentrations. Eur J Nutr 52:1901–1911

    CAS  Article  Google Scholar 

  41. 41.

    Franklin SS, Wong ND (2013) Hypertension and cardiovascular disease: contributions of the framingham heart study. Glob Heart 8:49–57

    Article  Google Scholar 

  42. 42.

    Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, Levy D (2001) Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 345:1291–1297

    CAS  Article  Google Scholar 

  43. 43.

    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146

    CAS  Article  Google Scholar 

  44. 44.

    Vega GL, Barlow CE, Grundy SM, Leonard D, DeFina LF (2014) Triglyceride-to-high-density-lipoprotein-cholesterol ratio is an index of heart disease mortality and of incidence of type 2 diabetes mellitus in men. J Investig Med 62:345–349

    CAS  Article  Google Scholar 

  45. 45.

    Shankar A, Mitchell P, Rochtchina E, Wang JJ (2007) The association between circulating white blood cell count, triglyceride level and cardiovascular and all-cause mortality: population-based cohort study. Atherosclerosis 192:177–183

    CAS  Article  Google Scholar 

  46. 46.

    Iso H, Cui R, Date C, Kikuchi S, Tamakoshi A, Group JS (2009) C-reactive protein levels and risk of mortality from cardiovascular disease in Japanese: the JACC Study. Atherosclerosis 207:291–297

    CAS  Article  Google Scholar 

  47. 47.

    Koenig W, Khuseyinova N, Baumert J, Meisinger C (2008) Prospective study of high-sensitivity C-reactive protein as a determinant of mortality: results from the MONICA/KORA Augsburg Cohort Study, 1984–1998. Clin Chem 54:335–342

    CAS  Article  Google Scholar 

  48. 48.

    Zacho J, Tybjaerg-Hansen A, Nordestgaard BG (2010) C-reactive protein and all-cause mortality–the Copenhagen City Heart Study. Eur Heart J 31:1624–1632

    CAS  Article  Google Scholar 

  49. 49.

    Ahmadi-Abhari S, Luben RN, Wareham NJ, Khaw KT (2013) Seventeen year risk of all-cause and cause-specific mortality associated with C-reactive protein, fibrinogen and leukocyte count in men and women: the EPIC-Norfolk study. Eur J Epidemiol 28:541–550

    CAS  Article  Google Scholar 

  50. 50.

    Kurl S, Zaccardi F, Onaemo VN, Jae SY, Kauhanen J, Ronkainen K, Laukkanen JA (2015) Association between HOMA-IR, fasting insulin and fasting glucose with coronary heart disease mortality in nondiabetic men: a 20-year observational study. Acta Diabetol 52:183–186

    CAS  Article  Google Scholar 

  51. 51.

    Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM (2012) Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One 7:e52036

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research received no specific Grant from any funding agency, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ock K. Chun.

Ethics declarations

Conflict of interest

K Kim, T. M. Vance, M-H. Chen, and O. K. Chun have no conflicts of interest on this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Vance, T.M., Chen, MH. et al. Dietary total antioxidant capacity is inversely associated with all-cause and cardiovascular disease death of US adults. Eur J Nutr 57, 2469–2476 (2018). https://doi.org/10.1007/s00394-017-1519-7

Download citation

Keywords

  • Total antioxidant capacity
  • Mortality
  • NHANES
  • Cardiovascular disease
  • Cancer