Advertisement

European Journal of Nutrition

, Volume 57, Issue 7, pp 2445–2455 | Cite as

Consumption of extra virgin olive oil improves body composition and blood pressure in women with excess body fat: a randomized, double-blinded, placebo-controlled clinical trial

  • Flávia Galvão Cândido
  • Flávia Xavier Valente
  • Laís Emilia da Silva
  • Olívia Gonçalves Leão Coelho
  • Maria do Carmo Gouveia Peluzio
  • Rita de Cássia Gonçalves Alfenas
Original Contribution

Abstract

Purpose

Despite the fact that extra virgin olive oil (EVOO) is widely used in obese individuals to treat cardiovascular diseases, the role of EVOO on weight/fat reduction remains unclear. We investigated the effects of energy-restricted diet containing EVOO on body composition and metabolic disruptions related to obesity.

Methods

This is a randomized, double-blinded, placebo-controlled clinical trial in which 41 adult women with excess body fat (mean ± SD 27.0 ± 0.9 year old, 46.8 ± 0.6% of total body fat) received daily high-fat breakfasts containing 25 mL of soybean oil (control group, n = 20) or EVOO (EVOO group, n = 21) during nine consecutive weeks. Breakfasts were part of an energy-restricted normal-fat diets (−2090 kJ, ~32%E from fat). Anthropometric and dual-energy X-ray absorptiometry were assessed, and fasting blood was collected on the first and last day of the experiment.

Results

Fat loss was ~80% higher on EVOO compared to the control group (mean ± SE: −2.4 ± 0.3 kg vs. −1.3 ± 0.4 kg, P = 0.037). EVOO also reduced diastolic blood pressure when compared to control (–5.1 ± 1.6 mmHg vs. +0.3 ± 1.2 mmHg, P = 0.011). Within-group differences (P < 0.050) were observed for HDL-c (−2.9 ± 1.2 mmol/L) and IL-10 (+0.9 ± 0.1 pg/mL) in control group, and for serum creatinine (+0.04 ± 0.01 µmol/L) and alkaline phosphatase (−3.3 ± 1.8 IU/L) in the EVOO group. There was also a trend for IL-1β EVOO reduction (−0.3 ± 0.1 pg/mL, P = 0.060).

Conclusion

EVOO consumption reduced body fat and improved blood pressure. Our results indicate that EVOO should be included into energy-restricted programs for obesity treatment.

Keywords

Extra virgin olive oil Soybean oil Body fat Blood pressure Adiposity Monounsaturated fatty acid 

Notes

Acknowledgements

We thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG (protocol number: APQ-01877-1). The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for providing research grants to the authors. We thank Bioclin® for providing biochemical assays kits. These companies had no role in design, analysis, or writing of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2017_1517_MOESM1_ESM.docx (43 kb)
Suppl. Figure 1 Schematic representation of study protocol (control group: n = 20; EVOO group: n = 21). FFQ: Food frequency questionnaire, EVOO: extra virgin olive oil (DOCX 42 kb)
394_2017_1517_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)
394_2017_1517_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 19 kb)

References

  1. 1.
    Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21. doi: 10.1111/j.1753-4887.2011.00456.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Malik VS, Willett WC, Hu FB (2012) Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 9:13–27. doi: 10.1038/nrendo.2012.199 CrossRefPubMedGoogle Scholar
  3. 3.
    Hruby A, Manson JE, Qi L et al (2016) Determinants and consequences of obesity. Am J Public Heal 106:1656–1662CrossRefGoogle Scholar
  4. 4.
    Servili M, Selvaggini R, Esposto S et al (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J Chromatogr A 1054:113–127. doi: 10.1016/j.chroma.2004.08.070 CrossRefPubMedGoogle Scholar
  5. 5.
    Covas M-I, Konstantinidou V, Fitó M (2009) Olive oil and cardiovascular health. J Cardiovasc Pharmacol 54:477–482. doi: 10.1097/FJC.0b013e3181c5e7fd CrossRefPubMedGoogle Scholar
  6. 6.
    López-Miranda J, Pérez-Jiménez F, Ros E et al (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr Metab Cardiovasc Dis 20:284–294. doi: 10.1016/j.numecd.2009.12.007 CrossRefPubMedGoogle Scholar
  7. 7.
    Pérez-Jiménez F, Ruano J, Perez-Martinez P et al (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51:1199–1208. doi: 10.1002/mnfr.200600273 CrossRefPubMedGoogle Scholar
  8. 8.
    Ruiz-Canela M, Martínez-González MA (2011) Olive oil in the primary prevention of cardiovascular disease. Maturitas 68:245–250. doi: 10.1016/j.maturitas.2010.12.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Guttersen C (2015) Olive oil for weight loss. North Am Olive Oil Assoc, BlogGoogle Scholar
  10. 10.
    Buckland G, Gonzalez CA (2015) The role of olive oil in disease prevention: a focus on the recent epidemiological evidence from cohort studies and dietary intervention trials. Br J Nutr 113:S94–S101. doi: 10.1017/S0007114514003936 CrossRefPubMedGoogle Scholar
  11. 11.
    Soriguer F, Rojo-Martínez G, de Fonseca FR et al (2007) Obesity and the metabolic syndrome in Mediterranean countries: a hypothesis related to olive oil. Mol Nutr Food Res 51:1260–1267. doi: 10.1002/mnfr.200700021 CrossRefPubMedGoogle Scholar
  12. 12.
    Romaguera D, Norat T, Vergnaud A-C et al (2010) Mediterranean dietary patterns and prospective weight change in participants of the EPIC-PANACEA project. Am J Clin Nutr 92:912–921. doi: 10.3945/ajcn.2010.29482 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Razquin C, Martinez JA, Martinez-Gonzalez MA et al (2009) A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur J Clin Nutr 63:1387–1393. doi: 10.1038/ejcn.2009.106 CrossRefPubMedGoogle Scholar
  14. 14.
    Serra-Majem L, Ngo de la Cruz J, Ribas L, Tur JA (2003) Olive oil and the Mediterranean diet: beyond the rhetoric. Eur J Clin Nutr 57:S2–S7. doi: 10.1038/sj.ejcn.1601801 CrossRefPubMedGoogle Scholar
  15. 15.
    Buckland G, Bach A, Serra-Majem L (2008) Obesity and the Mediterranean diet: a systematic review of observational and intervention studies. Obes Rev 9:582–593. doi: 10.1111/j.1467-789X.2008.00503.x CrossRefPubMedGoogle Scholar
  16. 16.
    Shai I, Schwarzfuchs D, Henkin Y et al (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359:229–241. doi: 10.1056/NEJMoa0708681 CrossRefPubMedGoogle Scholar
  17. 17.
    Esposito K, Marfella R, Ciotola M et al (2004) Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome. JAMA 292:1440. doi: 10.1001/jama.292.12.1440 CrossRefPubMedGoogle Scholar
  18. 18.
    Estruch R, Martínez-González MA, Corella D et al (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145:1–11CrossRefGoogle Scholar
  19. 19.
    Salas-Salvadó J, Fernández-Ballart J, Ros E et al (2008) Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med 168:2449–2458. doi: 10.1001/archinte.168.22.2449 CrossRefPubMedGoogle Scholar
  20. 20.
    St-Onge M-P, Bourque C, Jones PJH et al (2003) Medium- versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women. Int J Obes Relat Metab Disord 27:95–102. doi: 10.1038/sj.ijo.0802169 CrossRefPubMedGoogle Scholar
  21. 21.
    McManus K, Antinoro L, Sacks F (2001) A randomized controlled trial of a moderate-fat, low-energy diet compared with a low fat, low-energy diet for weight loss in overweight adults. Int J Obes 25:1503–1511. doi: 10.1038/sj.ijo.0801796 CrossRefGoogle Scholar
  22. 22.
    Mera R, Thompson H, Prasad C (1998) How to calculate sample size for an experiment: a case-based description. Nutr Neurosci 1:87–91. doi: 10.1080/1028415X.1998.11747217 CrossRefPubMedGoogle Scholar
  23. 23.
    Swinburn B, Arroll B (2016) Rethinking primary care systems for obesity. Lancet 338:2452–2454. doi: 10.1016/S0140-6736(16)31913-4 CrossRefGoogle Scholar
  24. 24.
    Zelen M (1974) The randomization and stratification of patients to clinical trials. J Chronic Dis 27:365–375. doi: 10.1016/0021-9681(74)90015-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Fung TT, Rexrode KM, Mantzoros CS et al (2009) Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 119:1093–1100. doi: 10.1161/CIRCULATIONAHA.108.816736 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Institute of Medicine (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press. doi: 10.17226/10490
  27. 27.
    Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476 (passim) PubMedGoogle Scholar
  28. 28.
    Rosa DD, Sales RL, Moraes LFS et al (2010) Flaxseed, olive and fish oil influence plasmatic lipids, lymphocyte migration and morphometry of the intestinal of Wistar rats. Acta Cir Bras 25:275–280. doi: 10.1590/S0102-86502010000300010 CrossRefPubMedGoogle Scholar
  29. 29.
    Hagströmer M, Oja P, Sjöström M (2006) The international physical activity questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 9:755–762CrossRefGoogle Scholar
  30. 30.
    Núcleo de Estudos e pesquisas em Alimentação—NEPA (2011) Tabela Brasileira de Composicao de Alimentos—TACO, 4th edn. NEPA-UNICAMP, CampinasGoogle Scholar
  31. 31.
    Philippi ST (2016) Tabela de Composição de Alimentos: suporte para decisão nutricional, 5th edn. Manole, São PauloGoogle Scholar
  32. 32.
    US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference. Avaiable at: http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 11 Oct 2016
  33. 33.
    Vasques AC, Rosado L, Rosado G et al (2010) Indicadores antropométricos de resistência à insulina. Arq Bras Cardiol 95:e14–e23. doi: 10.1590/S0066-782X2010001100025 CrossRefPubMedGoogle Scholar
  34. 34.
    Taylor RW, Jones IE, Williams SM, Goulding A (2000) Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3-19 y. Am J Clin Nutr 72:490–495CrossRefGoogle Scholar
  35. 35.
    Mancia G, De Backer G, Dominiczak A et al (2007) Guidelines for the management of arterial hypertension. Eur Heart J 28:1462–1536. doi: 10.1093/eurheartj/ehm236 CrossRefPubMedGoogle Scholar
  36. 36.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502Google Scholar
  37. 37.
    Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefGoogle Scholar
  38. 38.
    Dobiásová M (2006) AIP–atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr Lek 52:64–71PubMedGoogle Scholar
  39. 39.
    Hall KD (2008) What is the required energy deficit per unit weight loss? IntJ Obes (Lond) 32:573–576CrossRefGoogle Scholar
  40. 40.
    Pérez-Martínez P, García-Ríos A, Delgado-Lista J et al (2011) Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr Pharm Des 17:769–777CrossRefGoogle Scholar
  41. 41.
    Esposito K, Maiorino MI, Ceriello A, Giugliano D (2010) Prevention and control of type 2 diabetes by Mediterranean diet: a systematic review. Diabetes Res Clin Pract 89:97–102. doi: 10.1016/j.diabres.2010.04.019 CrossRefPubMedGoogle Scholar
  42. 42.
    Estruch R, Martínez-González MA, Corella D et al (2016) Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol 4:666–676. doi: 10.1016/S2213-8587(16)30085-7 CrossRefGoogle Scholar
  43. 43.
    Ntambi JM (1995) The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res 34:139–150CrossRefGoogle Scholar
  44. 44.
    Cohen P, Miyazaki M, Socci ND et al (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297:240–243. doi: 10.1126/science.1071527 CrossRefPubMedGoogle Scholar
  45. 45.
    Ntambi JM, Miyazaki M, Stoehr JP et al (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci 99:11482–11486. doi: 10.1073/pnas.132384699 CrossRefPubMedGoogle Scholar
  46. 46.
    Bondia-Pons I, Schröder H, Covas M-I et al (2007) Moderate consumption of olive oil by healthy European men reduces systolic blood pressure in non-Mediterranean participants. J Nutr 137:84–87CrossRefGoogle Scholar
  47. 47.
    Fitó M, Cladellas M, de la Torre R et al (2005) Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181:149–158. doi: 10.1016/j.atherosclerosis.2004.12.036 CrossRefPubMedGoogle Scholar
  48. 48.
    Storniolo CE, Casillas R, Bulló M et al (2015) A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women. Eur J Nutr. doi: 10.1007/s00394-015-1060-5 CrossRefPubMedGoogle Scholar
  49. 49.
    Terés S, Barceló-Coblijn G, Benet M et al (2008) Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA 105:13811–13816. doi: 10.1073/pnas.0807500105 CrossRefPubMedGoogle Scholar
  50. 50.
    Covas M-I, Nyyssönen K, Poulsen HE et al (2006) The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 145:333–341CrossRefGoogle Scholar
  51. 51.
    Ramirez-Tortosa MC, Urbano G, López-Jurado M et al (1999) Extra virgin olive oil increases the resistance of LDL to oxidation more than refined olive oil in free-living men with peripheral vascular disease. J Nutr 129:2177–2183CrossRefGoogle Scholar
  52. 52.
    Moschandreas J, Vissers MN, Wiseman S et al (2002) Extra virgin olive oil phenols and markers of oxidation in Greek smokers: a randomized cross-over study. Eur J Clin Nutr 56:1024–1029. doi: 10.1038/sj.ejcn.1601444 CrossRefPubMedGoogle Scholar
  53. 53.
    Visioli F, Caruso D, Grande S et al (2005) Virgin olive oil study (VOLOS): vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur J Nutr 44:121–127. doi: 10.1007/s00394-004-0504-0 CrossRefPubMedGoogle Scholar
  54. 54.
    Vissers MN, Zock PL, Wiseman SA et al (2001) Effect of phenol-rich extra virgin olive oil on markers of oxidation in healthy volunteers. Eur J Clin Nutr 55:334–341. doi: 10.1038/sj.ejcn.1601161 CrossRefPubMedGoogle Scholar
  55. 55.
    Hohmann CD, Cramer H, Michalsen A et al (2015) Effects of high phenolic olive oil on cardiovascular risk factors: a systematic review and meta-analysis. Phytomedicine 22:631–640. doi: 10.1016/j.phymed.2015.03.019 CrossRefPubMedGoogle Scholar
  56. 56.
    de Bruin TW, Brouwer CB, van Linde-Sibenius Trip M et al (1993) Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high-density lipoprotein conserving effect of olive oil. Am J Clin Nutr 58:477–483CrossRefGoogle Scholar
  57. 57.
    Bobulescu IA (2010) Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 19:393–402. doi: 10.1097/MNH.0b013e32833aa4ac CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    De La Cruz JP, Quintero L, Villalobos MA, Sánchez de la Cuesta F (2000) Lipid peroxidation and glutathione system in hyperlipemic rabbits: influence of olive oil administration. Biochim Biophys Acta 1485:36–44CrossRefGoogle Scholar
  59. 59.
    Poudyal H, Campbell F, Brown L (2010) Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr 140:946–953. doi: 10.3945/jn.109.117812 CrossRefPubMedGoogle Scholar
  60. 60.
    Chavali SR, Zhong WW, Forse RA (1998) Dietary alpha-linolenic acid increases TNF-alpha, and decreases IL-6, IL-10 in response to LPS: effects of sesamin on the delta-5 desaturation of omega6 and omega3 fatty acids in mice. Prostaglandins Leukot Essent Fatty Acids 58:185–191CrossRefGoogle Scholar
  61. 61.
    Kremer JM, Lawrence DA, Jubiz W et al (1990) Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Clinical immunologic effects. Arthritis Rheum 33:810–820CrossRefGoogle Scholar
  62. 62.
    Kang JX, Weylandt KH (2008) Modulation of inflammatory cytokines by omega-3 fatty acids. Lipids health disease. Springer, Dordrecht, pp 133–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Flávia Galvão Cândido
    • 1
  • Flávia Xavier Valente
    • 1
  • Laís Emilia da Silva
    • 1
  • Olívia Gonçalves Leão Coelho
    • 1
  • Maria do Carmo Gouveia Peluzio
    • 1
  • Rita de Cássia Gonçalves Alfenas
    • 1
  1. 1.Departamento de Nutrição e SaúdeUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations