Skip to main content

Advertisement

Log in

Blackcurrant anthocyanins stimulated cholesterol transport via post-transcriptional induction of LDL receptor in Caco-2 cells

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purposes

We previously showed that polyphenol-rich blackcurrant extract (BCE) showed a hypocholesterolemic effect in mice fed a high fat diet. As direct cholesterol removal from the body via the intestine has been recently appreciated, we investigated the effect of BCE on the modulation of genes involved in intestinal cholesterol transport using Caco-2 cells as an in vitro model.

Methods

Caco-2 cells were treated with BCE to determine its effects on mRNA and protein expression of genes important for intestinal cholesterol transport, low-density lipoprotein (LDL) uptake, cellular cholesterol content, and cholesterol transport from basolateral to apical membrane of Caco-2 cell monolayers. Cells were also treated with anthocyanin-rich or -poor fraction of BCE to determine the role of anthocyanin on BCE effects.

Results

BCE significantly increased protein levels of LDL receptor (LDLR) without altering its mRNA, which consequently increased LDL uptake into Caco-2 cells. This post-transcriptional induction of LDLR by BCE was markedly attenuated in the presence of rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). In addition, BCE altered genes involved in cholesterol transport in the enterocytes, including apical and basolateral cholesterol transporters, in such a way that could enhance cholesterol flux from the basolateral to apical side of the enterocytes. Indeed, BCE significantly increased the flux of LDL-derived cholesterol from the basolateral to the apical chamber of Caco-2 monolayer. LDLR protein levels were markedly increased by anthocyanin-rich fraction, but not by anthocyanin-free fraction.

Conclusion

mTORC1-dependent post-transcriptional induction of LDLR by BCE anthocyanins drove the transport of LDL-derived cholesterol to the apical side of the enterocytes. This may represent a potential mechanism for the hypocholesterolemic effect of BCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette transporter

ACAT2:

Acetyl-CoA acetyltransferase 2

ACOX-1:

Acyl-CoA oxidase 1

BAF:

Anthocyanin-free fraction of BCE

BAR:

Anthocyanin-rich fraction of BCE

BCE:

Black currant extract

CAF:

Anthocyanin-free fraction of CBE

CAR:

Anthocyanin-rich fraction of CBE

CBE:

Black chokeberry extract

CVD:

Cardiovascular disease

FAS:

Fatty acid synthase

HDL:

High-density lipoprotein

HMGR:

3-Hydroxy-3-methyl-glutaryl coenzyme A reductase

LDLR:

LDL receptor

mTORC1:

Mechanistic target of rapamycin complex 1

NPC1L1:

Niemann-Pick C1 like 1

MTTP:

Microsomal triglyceride transfer protein

SCD-1:

Stearoyl CoA desaturase-1

SR-BI:

Scavenger receptor class B, type I

SREBP:

Sterol regulatory element-binding protein

PCSK9:

Proprotein convertase subtilisin/kexin type 9

TICE:

Trans-intestinal cholesterol excretion

References

  1. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derre A, Villeger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156. doi:10.1038/ng1161

    Article  CAS  Google Scholar 

  2. Ai D, Chen C, Han S, Ganda A, Murphy AJ, Haeusler R, Thorp E, Accili D, Horton JD, Tall AR (2012) Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 122:1262–1270. doi:10.1172/JCI61919

    Article  CAS  Google Scholar 

  3. Alayev A, Sun Y, Snyder RB, Berger SM, Yu JJ, Holz MK (2014) Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells. Cell Cycle 13:371–382. doi:10.4161/cc.27355

    Article  CAS  Google Scholar 

  4. Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S (2009) Curcumin disrupts the Mammalian target of rapamycin-raptor complex. Can Res 69:1000–1008. doi:10.1158/0008-5472.CAN-08-2367

    Article  CAS  Google Scholar 

  5. Benn T, Kim B, Park YK, Yang Y, Pham TX, Ku CS, Farruggia C, Harness E, Smyth JA, Lee JY (2015) Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol. Br J Nutr 113:1697–1703. doi:10.1017/S0007114515001105

    Article  CAS  Google Scholar 

  6. Blanchard C, Moreau F, Cariou B, Le May C (2014) Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion. Med Sci M/S 30:896–901. doi:10.1051/medsci/20143010017

    Google Scholar 

  7. Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, Zhang J, Davis MA, Sawyer JK, Shah R, Wilson MD, Dikkers A, Tietge UJ, Collet X, Rudel LL, Temel RE, Brown JM (2013) Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res 54:1567–1577. doi:10.1194/jlr.M034454

    Article  CAS  Google Scholar 

  8. Cooper AD (1991) Metabolic basis of cholesterol gallstone disease. Gastroenterol Clin North Am 20:21–46

    CAS  Google Scholar 

  9. Cucuianu M, Coca M, Hancu N (2007) Reverse cholesterol transport and atherosclerosis. A mini review. Romanian J Intern Med 45:17–27

    CAS  Google Scholar 

  10. Edirisinghe I, Banaszewski K, Cappozzo J, McCarthy D, Burton-Freeman BM (2011) Effect of black currant anthocyanins on the activation of endothelial nitric oxide synthase (eNOS) in vitro in human endothelial cells. J Agric Food Chem 59:8616–8624. doi:10.1021/jf201116y

    Article  CAS  Google Scholar 

  11. Finne Nielsen IL, Elbol Rasmussen S, Mortensen A, Ravn-Haren G, Ma HP, Knuthsen P, Hansen BF, McPhail D, Freese R, Breinholt V, Frandsen H, Dragsted LO (2005) Anthocyanins increase low-density lipoprotein and plasma cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits. Mol Nutr Food Res 49:301–308. doi:10.1002/mnfr.200400097

    Article  Google Scholar 

  12. Ge L, Wang J, Qi W, Miao HH, Cao J, Qu YX, Li BL, Song BL (2008) The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7:508–519. doi:10.1016/j.cmet.2008.04.001

    Article  CAS  Google Scholar 

  13. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:399–410. doi:10.1161/01.cir.0000442015.53336.12

    Article  Google Scholar 

  14. Gopalan A, Reuben SC, Ahmed S, Darvesh AS, Hohmann J, Bishayee A (2012) The health benefits of blackcurrants. Food Funct 3:795–809. doi:10.1039/c2fo30058c

    Article  CAS  Google Scholar 

  15. Graf D, Seifert S, Jaudszus A, Bub A, Watzl B (2013) Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats. PLoS ONE 8:e66690. doi:10.1371/journal.pone.0066690

    Article  CAS  Google Scholar 

  16. Grundy SM, Metzger AL (1972) A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology 62:1200–1217

    CAS  Google Scholar 

  17. Grunhage F, Acalovschi M, Tirziu S, Walier M, Wienker TF, Ciocan A, Mosteanu O, Sauerbruch T, Lammert F (2007) Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transporter for cholesterol. Hepatology 46:793–801. doi:10.1002/hep.21847

    Article  Google Scholar 

  18. Hussain MM (2014) Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol 25:200–206. doi:10.1097/MOL.0000000000000084

    Article  CAS  Google Scholar 

  19. Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138. doi:10.1038/nrm2336

    Article  CAS  Google Scholar 

  20. Iqbal J, Boutjdir M, Rudel LL, Hussain MM (2014) Intestine-specific MTP and global ACAT2 deficiency lowers acute cholesterol absorption with chylomicrons and HDLs. J Lipid Res 55:2261–2275. doi:10.1194/jlr.M047951

    Article  CAS  Google Scholar 

  21. Jakulj L, Besseling J, Stroes ES, Groen AK (2013) Intestinal cholesterol secretion: future clinical implications. Neth J Med 71:459–465

    CAS  Google Scholar 

  22. Jean-Gilles D, Li L, Ma H, Yuan T, Chichester CO 3rd, Seeram NP (2012) Anti-inflammatory effects of polyphenolic-enriched red raspberry extract in an antigen-induced arthritis rat model. J Agric Food Chem 60:5755–5762. doi:10.1021/jf203456w

    Article  CAS  Google Scholar 

  23. Jensen MK, Bertoia ML, Cahill LE, Agarwal I, Rimm EB, Mukamal KJ (2014) Novel metabolic biomarkers of cardiovascular disease. Endocrinology, Nat Rev. doi:10.1038/nrendo.2014.155

    Google Scholar 

  24. Jia N, Kong B, Liu Q, Diao X, Xia X (2012) Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci 91:533–539. doi:10.1016/j.meatsci.2012.03.010

    Article  CAS  Google Scholar 

  25. Johnson SM, Gulhati P, Arrieta I, Wang X, Uchida T, Gao T, Evers BM (2009) Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res 29:3185–3190

    CAS  Google Scholar 

  26. Jurgonski A, Fotschki B, Juskiewicz J (2015) Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet. Eur J Nutr 54:991–999. doi:10.1007/s00394-014-0775-z

    Article  CAS  Google Scholar 

  27. Jurgonski A, Juskiewicz J, Zdunczyk Z (2008) Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods Hum Nutr 63:176–182. doi:10.1007/s11130-008-0087-7

    Article  Google Scholar 

  28. Jurgonski A, Juskiewicz J, Zdunczyk Z, Matusevicius P, Kolodziejczyk K (2014) Polyphenol-rich extract from blackcurrant pomace attenuates the intestinal tract and serum lipid changes induced by a high-fat diet in rabbits. Eur J Nutr 53:1603–1613. doi:10.1007/s00394-014-0665-4

    Article  CAS  Google Scholar 

  29. Kapourchali FR, Surendiran G, Goulet A, Moghadasian MH (2015) The role of dietary cholesterol in lipoprotein metabolism and related metabolic abnormalities: a mini-review. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2013.842887

    Google Scholar 

  30. Kasiske BL, de Mattos A, Flechner SM, Gallon L, Meier-Kriesche HU, Weir MR, Wilkinson A (2008) Mammalian target of rapamycin inhibitor dyslipidemia in kidney transplant recipients. Am J Transpl 8:1384–1392. doi:10.1111/j.1600-6143.2008.02272.x

    Article  CAS  Google Scholar 

  31. Kim B, Ku CS, Pham TX, Park Y, Martin DA, Xie L, Taheri R, Lee J, Bolling BW (2013) Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutr Res 33:406–413. doi:10.1016/j.nutres.2013.03.001

    Article  CAS  Google Scholar 

  32. Kim B, Park Y, Wegner CJ, Bolling BW, Lee J (2013) Polyphenol-rich black chokeberry (Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells. J Nutr Biochem 24:1564–1570. doi:10.1016/j.jnutbio.2013.01.005

    Article  CAS  Google Scholar 

  33. Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa)—a review on the characteristic components and potential health effects. Planta Med 74:1625–1634. doi:10.1055/s-0028-1088306

    Article  CAS  Google Scholar 

  34. Le May C, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P (2013) Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 33:1484–1493. doi:10.1161/ATVBAHA.112.300263

    Article  Google Scholar 

  35. Le May C, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P (2013) Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 33:1484–1493. doi:10.1161/ATVBAHA.112.300263

    Article  Google Scholar 

  36. Lee SG, Kim B, Yang Y, Pham TX, Park YK, Manatou J, Koo SI, Chun OK, Lee JY (2014) Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-kappaB independent of NRF2-mediated mechanism. J Nutr Biochem 25:404–411. doi:10.1016/j.jnutbio.2013.12.001

    Article  CAS  Google Scholar 

  37. Li J, Tumanut C, Gavigan JA, Huang WJ, Hampton EN, Tumanut R, Suen KF, Trauger JW, Spraggon G, Lesley SA, Liau G, Yowe D, Harris JL (2007) Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem J 406:203–207. doi:10.1042/BJ20070664

    Article  CAS  Google Scholar 

  38. Li W, Hydamaka A, Lowry L, Beta T (2009) Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Cent Eur J Biol 4:499–506. doi:10.2478/s11535-009-0041-1

    CAS  Google Scholar 

  39. Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F (2010) Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem 285:36387–36394. doi:10.1074/jbc.M110.169284

    Article  CAS  Google Scholar 

  40. Mathis AS, Dave N, Knipp GT, Friedman GS (2004) Drug-related dyslipidemia after renal transplantation. Am J Health Syst Pharm 61:565–585; quiz 586–567

  41. McNutt MC, Lagace TA, Horton JD (2007) Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem 282:20799–20803. doi:10.1074/jbc.C700095200

    Article  CAS  Google Scholar 

  42. Mitchell JC, Stone BG, Logan GM, Duane WC (1991) Role of cholesterol synthesis in regulation of bile acid synthesis and biliary cholesterol secretion in humans. J Lipid Res 32:1143–1149

    CAS  Google Scholar 

  43. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131:e29–322. doi:10.1161/CIR.0000000000000152

    Article  Google Scholar 

  44. Mulligan JD, Flowers MT, Tebon A, Bitgood JJ, Wellington C, Hayden MR, Attie AD (2003) ABCA1 is essential for efficient basolateral cholesterol efflux during the absorption of dietary cholesterol in chickens. J Biol Chem 278:13356–13366. doi:10.1074/jbc.M212377200

    Article  CAS  Google Scholar 

  45. Neufeld EB, Demosky SJ Jr, Stonik JA, Combs C, Remaley AT, Duverger N, Santamarina-Fojo S, Brewer HB Jr (2002) The ABCA1 transporter functions on the basolateral surface of hepatocytes. Biochem Biophys Res Commun 297:974–979

    Article  CAS  Google Scholar 

  46. Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Rudel LL (2012) Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J Lipid Res 53:95–104. doi:10.1194/jlr.M018820

    Article  CAS  Google Scholar 

  47. Park JH, Kho MC, Kim HY, Ahn YM, Lee YJ, Kang DG, Lee HS (2015) Blackcurrant suppresses metabolic syndrome induced by high-fructose diet in rats. eCAM 2015:385976. doi:10.1155/2015/385976

    Google Scholar 

  48. Park YK, Rasmussen HE, Ehlers SJ, Blobaum KR, Lu F, Schlegal VL, Carr TP, Lee JY (2008) Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kutzing, a blue-green alga, via inhibition of nuclear factor-kappaB in RAW 264.7 macrophages. Nutr Res 28:83–91. doi:10.1016/j.nutres.2007.11.008

    Article  CAS  Google Scholar 

  49. Pittman RC, Attie AD, Carew TE, Steinberg D (1979) Tissue sites of degradation of low density lipoprotein: application of a method for determining the fate of plasma proteins. Proc Natl Acad Sci USA 76:5345–5349

    Article  CAS  Google Scholar 

  50. Prior RL, Wilkes SE, Rogers TR, Khanal RC, Wu X, Howard LR (2010) Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem 58:3970–3976. doi:10.1021/jf902852d

    Article  CAS  Google Scholar 

  51. Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, Cao L, Ling W (2009) Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr 90:485–492. doi:10.3945/ajcn.2009.27814

    Article  CAS  Google Scholar 

  52. Rasmussen HE, Blobaum KR, Park YK, Ehlers SJ, Lu F, Lee JY (2008) Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells. J Nutr 138:476–481

    Article  CAS  Google Scholar 

  53. Riso P, Klimis-Zacas D, Del Bo C, Martini D, Campolo J, Vendrame S, Moller P, Loft S, De Maria R, Porrini M (2013) Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur J Nutr 52:949–961. doi:10.1007/s00394-012-0402-9

    Article  CAS  Google Scholar 

  54. Sato R (2001) SREBP2 and cholesterol metabolism. Nihon rinsho. Jpn J Clin Med 59(Suppl 2):264–269

    Google Scholar 

  55. Sato R (2010) Sterol metabolism and SREBP activation. Arch Biochem Biophys 501:177–181. doi:10.1016/j.abb.2010.06.004

    Article  CAS  Google Scholar 

  56. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54:9329–9339. doi:10.1021/jf061750g

    Article  CAS  Google Scholar 

  57. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100:928–933. doi:10.1073/pnas.0335507100

    Article  CAS  Google Scholar 

  58. Serraino I, Dugo L, Dugo P, Mondello L, Mazzon E, Dugo G, Caputi AP, Cuzzocrea S (2003) Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sci 73:1097–1114

    Article  CAS  Google Scholar 

  59. Skoczynska A, Jedrychowska I, Poreba R, Affelska-Jercha A, Turczyn B, Wojakowska A, Andrzejak R (2007) Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol Rep 2007:177–182

    Google Scholar 

  60. Spady DK, Bilheimer DW, Dietschy JM (1983) Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster. Proc Natl Acad Sci USA 80:3499–3503

    Article  CAS  Google Scholar 

  61. Tietge UJ, Groen AK (2013) Role the TICE?: advancing the concept of transintestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 33:1452–1453. doi:10.1161/ATVBAHA.113.301562

    Article  CAS  Google Scholar 

  62. Valcheva-Kuzmanova S, Kuzmanov K, Mihova V, Krasnaliev I, Borisova P, Belcheva A (2007) Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats fed a high-cholesterol diet. Plant Foods Hum Nutr 62:19–24. doi:10.1007/s11130-006-0036-2

    Article  CAS  Google Scholar 

  63. Valcheva-Kuzmanova S, Kuzmanov K, Tancheva S, Belcheva A (2007) Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats. Methods Find Exp Clin Pharmacol 29:101–105. doi:10.1358/mf.2007.29.2.1075349

    Article  CAS  Google Scholar 

  64. van der Veen JN, Kruit JK, Havinga R, Baller JFW, Chimini G, Lestavel S, Staels B, Groot PHE, Groen AK, Kuipers F (2005) Reduced cholesterol absorption upon PPAR delta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 46:526–534

    Article  Google Scholar 

  65. van der Veen JN, van Dijk TH, Vrins CL, van Meer H, Havinga R, Bijsterveld K, Tietge UJ, Groen AK, Kuipers F (2009) Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 284:19211–19219. doi:10.1074/jbc.M109.014860

    Article  Google Scholar 

  66. van der Veen JN, van Dijk TH, Vrins CL, van Meer H, Havinga R, Bijsterveld K, Tietge UJ, Groen AK, Kuipers F (2009) Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 284:19211–19219. doi:10.1074/jbc.M109.014860

    Article  Google Scholar 

  67. Vrins CL, Ottenhoff R, van den Oever K, de Waart DR, Kruyt JK, Zhao Y, van Berkel TJ, Havekes LM, Aerts JM, van Eck M, Rensen PC, Groen AK (2012) Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein. J Lipid Res 53:2017–2023. doi:10.1194/jlr.M022194

    Article  CAS  Google Scholar 

  68. Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 111:967–981. doi:10.1161/CIRCRESAHA.112.266502

    Article  CAS  Google Scholar 

  69. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349:g4490. doi:10.1136/bmj.g4490

    Article  Google Scholar 

  70. Wegner CJ, Kim B, Lee J (2013) Trust your gut: galvanizing nutritional interest in intestinal cholesterol metabolism for protection against cardiovascular diseases. Nutrients 5:208–222. doi:10.3390/nu5010208

    Article  CAS  Google Scholar 

  71. Widlund AL, Baur JA, Vang O (2013) mTOR: more targets of resveratrol? Expert Rev Mol Med 15:e10. doi:10.1017/erm.2013.11

    Article  Google Scholar 

  72. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    Article  CAS  Google Scholar 

  73. Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856. doi:10.1021/jf0486850

    Article  CAS  Google Scholar 

  74. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675–683. doi:10.1002/mnfr.200700002

    Article  CAS  Google Scholar 

  75. Zhu Y, Huang X, Zhang Y, Wang Y, Liu Y, Sun R, Xia M (2014) Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J Clin Endocrinol Metab 99:561–569. doi:10.1210/jc.2013-2845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012R1A6A3A03039945) to B. Kim and by USDA AFRI 2016-67017-24463, USDA Hatch Grant (CONS00972), and USDA Multi-State Hatch Grant (CONS00916) to J. Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Young Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10 kb)

Supplementary material 2 (PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Bae, M., Park, YK. et al. Blackcurrant anthocyanins stimulated cholesterol transport via post-transcriptional induction of LDL receptor in Caco-2 cells. Eur J Nutr 57, 405–415 (2018). https://doi.org/10.1007/s00394-017-1506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1506-z

Keywords

Navigation