Adherence to Mediterranean diet in relation to bone mineral density and risk of fracture: a systematic review and meta-analysis of observational studies

Abstract

Purpose

We aimed to systematically review available data on the association between adherence to MD and BMD as well as risk of fractures and to summarize this information through a meta-analysis.

Methods

Previous studies in the field of adherence to MD in relation to BMD and risk of fracture were selected through searching PubMed, Scopus, ISI Web of Science and Google Scholar databases prior to June, 2016 using Mesh and non-Mesh relevant keywords.

Results

In the meta-analysis of four effect sizes, obtained from three studies, we found that adherence to MD was associated with a 21% reduced risk of hip fracture (overall RR 0.79; 95% CIs 0.72–0.87). Adherence to MD was positively associated with lumber spines (mean difference of BMD comparing highest and lowest categories of MD score 0.12; 95% CI 0.06–0.19 g/cm2), femoral neck (0.10; 0.06–0.15 g/cm2) and total hip (0.11; 0.09–0.14 g/cm2) BMD. Meta-regression of included observational studies revealed a significant inverse linear association between Mediterranean diet score and risk of hip fracture, such that one unit increase in the score of Mediterranean diet was associated with a reduction in the risk of hip fracture (RR 0.95, 95% CI 0.92–0.98 p = 0.01).

Conclusion

Adherence to MD was associated with a reduced risk of fracture as well as with a higher mean BMD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

MD:

Mediterranean diet

BMD:

Bone mineral density

HR:

Hazard ratio

RR:

Relative risk

CI:

Confidence interval

SD:

Standard deviation

SE:

Standard error

MeSH:

Medical Subjects Headings, tiab: title and abstract

US:

United State

NOS:

Newcastle–Ottawa Scale

FFQ:

Food Frequency Questionnaire

KIDMED:

Mediterranean Diet Quality Index in children and adolescents

DXA:

Dual-energy X-ray absorptiometry

CVD:

Cardiovascular disease

References

  1. 1.

    Dorland NW (2011) Dorland’s illustrated medical dictionary, 32nd edn. Elsevier Health Sciences, Philadelphia

    Google Scholar 

  2. 2.

    Ratini M (2015) Understanding bone fractures—the basics. WebMD Better Information Better Health. http://www.webmd.com/a-to-z-guides/understanding-fractures-basic-information. Accessed March 2016

  3. 3.

    Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ 3rd (2014) Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res 29:581–589

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Maharlouei N, Khodayari M, Forouzan F, Rezaianzadeh A, Lankarani KB (2014) The incidence rate of hip fracture in Shiraz, Iran during 2008–2010. Arch Osteoporos 9:165–167

    Article  PubMed  Google Scholar 

  5. 5.

    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Richmond J, Aharonoff GB, Zuckerman JD, Koval KJ (2003) Mortality risk after hip fracture. J Orthop Trauma 17:53–56

    Article  PubMed  Google Scholar 

  7. 7.

    Becker DJ, Kilgore ML, Morrisey MA (2010) The societal burden of osteoporosis. Curr Rheumatol Rep 12:186–191

    Article  Google Scholar 

  8. 8.

    Liem IS, Kammerlander C, Suhm N, Kates SL, Blauth M (2014) Literature review of outcome parameters used in studies of Geriatric Fracture Centers. Arch Orthop Trauma Surg 134:181–187

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Wieland D (2012) Aging and health A to Z, fractures. Health in aging. http://www.healthinaging.org/aging-and-health-a-to-z/topic:fractures. Accessed May 2016

  10. 10.

    Hoppenfeld S, Murthy VL (2000) Treatmeant and rehabilitation of fracture, Illustrated edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  11. 11.

    Huang Z, Himes JH, McGovern PG (1996) Nutrition and subsequent hip fracture risk among a national cohort of white women. Am J Epidemiol 144:124–134

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Sahni S, Mangano KM, Tucker KL, Kiel DP, Casey VA, Hannan MT (2014) Protective association of milk intake on the risk of hip fracture: results from the Framingham Original Cohort. J Bone Miner Res 29:1756–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Benetou V, Orfanos P, Feskanich D, Michaelsson K, Pettersson-Kymmer U, Eriksson S, Grodstein F, Wolk A, Bellavia A, Ahmed LA et al (2016) Fruit and vegetable intake and hip fracture incidence in older men and women: the CHANCES Project. J Bone Miner Res 31:1743–1752

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Byberg L, Bellavia A, Orsini N, Wolk A, Michaelsson K (2015) Fruit and vegetable intake and risk of hip fracture: a cohort study of Swedish men and women. J Bone Miner Res 30:976–984

    Article  PubMed  Google Scholar 

  15. 15.

    Sahni S, Tucker KL, Kiel DP, Quach L, Casey VA, Hannan MT (2013) Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: the Framingham Offspring Study. Arch Osteoporos 8:119–134

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G et al (2011) Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 14:2274–2284

    Article  PubMed  Google Scholar 

  17. 17.

    Naska A, Trichopoulou A (2014) Back to the future: the Mediterranean diet paradigm. Nutr Metab Cardiovasc Dis 24:216–219

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Baron YM, Brincat M, Galea R, Baron AM (1994) The epidemiology of osteoporotic fractures in a Mediterranean country. Calcif Tissue Int 54:365–369

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Benetou V, Orfanos P, Pettersson-Kymmer U, Bergstrom U, Svensson O, Johansson I, Berrino F, Tumino R, Borch KB, Lund E et al (2013) Mediterranean diet and incidence of hip fractures in a European cohort. Osteoporos Int 24:1587–1598

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Haring B, Crandall CJ, Wu C, LeBlanc ES, Shikany JM, Carbone L, Orchard T, Thomas F, Wactawaski-Wende J, Li W et al (2016) Dietary patterns and fractures in postmenopausal women: results from the women’s health initiative. JAMA Intern Med 176:645–652

    Article  PubMed  Google Scholar 

  21. 21.

    Zeng FF, Xue WQ, Cao WT, Wu BH, Xie HL, Fan F, Zhu HL, Chen YM (2014) Diet-quality scores and risk of hip fractures in elderly urban Chinese in Guangdong, China: a case–control study. Osteoporos Int 25:2131–2141

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Byberg L, Bellavia A, Larsson SC, Orsini N, Wolk A, Michaelsson K (2016) Mediterranean diet and hip fracture in Swedish men and women. J Bone Miner Res 31:2098–2105

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Feart C, Lorrain S, Ginder Coupez V, Samieri C, Letenneur L, Paineau D, Barberger-Gateau P (2013) Adherence to a Mediterranean diet and risk of fractures in French older persons. Osteoporos Int 24:3031–3041

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Rivas A, Romero A, Mariscal-Arcas M, Monteagudo C, Feriche B, Lorenzo ML, Olea F (2013) Mediterranean diet and bone mineral density in two age groups of women. Int J Food Sci Nutr 64:155–161

    Article  PubMed  Google Scholar 

  25. 25.

    Chen GD, Dong XW, Zhu YY, Tian HY, He J, Chen YM (2016) Adherence to the Mediterranean diet is associated with a higher BMD in middle-aged and elderly Chinese. Sci Rep 6:25662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Vuolo L, Barrea L, Savanelli MC, Savastano S, Rubino M, Scarano E, Soprano M, Illario M, Colao A, Somma CD (2015) Nutrition and osteoporosis: preliminary data of Campania Region of European PERsonalised ICT supported service for independent living and active ageing. Transl Med UniSa 13:13–18

    CAS  PubMed  Google Scholar 

  27. 27.

    Noel SE, Bigornia SJ, Mangano KM, Tucker KL (2016) Mediterranean-style dietary pattern is associated with hip bone mineral density among older Puerto Rican adults. FASEB J 30:Suppl 678.4

    Google Scholar 

  28. 28.

    Monjardino T, Lucas R, Ramos E, Barros H (2014) Associations between a priori-defined dietary patterns and longitudinal changes in bone mineral density in adolescents. Public Health Nutr 17:195–205

    Article  PubMed  Google Scholar 

  29. 29.

    Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I, Panagiotakos DB, Yiannakouris N (2009) Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition 25:165–171

    Article  PubMed  Google Scholar 

  30. 30.

    Whittle CR, Woodside JV, Cardwell CR, McCourt HJ, Young IS, Murray LJ, Boreham CA, Gallagher AM, Neville CE, McKinley MC (2012) Dietary patterns and bone mineral status in young adults: the Northern Ireland Young Hearts Project. Br J Nutr 108:1494–1504

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Aparicio VA, Ruiz-Cabello P, Borges-Cosic M, Andrade A, Coll-Risco I, Acosta-Manzano P, Soriano-Maldonado A (2016) Association of physical fitness, body composition, cardiometabolic markers and adherence to the Mediterranean diet with bone mineral density in perimenopausal women. The FLAMENCO project. J Sports Sci 16:1–8

    Google Scholar 

  32. 32.

    Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2014) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institue. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed June 2016

  33. 33.

    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Genaro PDS, Martini LA (2010) Effect of protein intake on bone and muscle mass in the elderly. Nutr Rev 68:616–623

    Article  Google Scholar 

  35. 35.

    Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, Melton LJ, Cummings SR, Kanis JA, IOF CSA Working Group on Fracture Epidemiology (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Romero Perez A, Rivas Velasco A (2014) Adherence to Mediterranean diet and bone health. Nutr Hosp 29:989–996

    PubMed  Google Scholar 

  37. 37.

    Dai J, Miller A, Bremner J, Goldberg J, Jones L, Shallenberger L, Buckham R, Murrah NV, Veledar E, Wilson PW et al (2008) adherence to the Mediterranean diet is inversely associated with circulating interlukin-6 among middle-aged men: a twin study. Circulation 117:169–175

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Esposito K, Marfella R, Ciotola M, Palo C, Giugliano F, Giugliano G, D’Armiento M, D’Andrea F, Giugliano D (2004) Effect of a mediterranean-style diet on endothelial dysfunction and vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292:1440–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Mundy G (2007) Osteoporosis and inflammation. Nutr Rev 65:5147–5151

    Article  Google Scholar 

  40. 40.

    Remer T, Manz F (1995) Potential renal acid load of foods and influence on urine pH. J Am Diet Assoc 95:791–797

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Bushinsky D (2001) Acid-base imbalance and the skeleton. Eur J Nutr 40:238–244

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Willett WC (2016) Mediterranean diet and fracture risk. JAMA 176:652–653

    Google Scholar 

Download references

Acknowledgements

The project was financially supported by a joint collaboration of Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, and School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran as well as by the Iran National Science Foundation (INSF).

Author information

Affiliations

Authors

Contributions

HM, PS, BL and AE contributed in conception, design, statistical analyses, data interpretation and manuscript drafting. All authors approved the final manuscript for submission.

Corresponding authors

Correspondence to Bagher Larijani or Ahmad Esmaillzadeh.

Ethics declarations

Funding

The project was financially supported by a joint collaboration of Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, and School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran as well as by the Iran National Science Foundation (INSF).

Conflict of interest

Hanieh Malmir, Parvane Saneei, Bagher Larijani and Ahmad Esmaillzadeh declared that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malmir, H., Saneei, P., Larijani, B. et al. Adherence to Mediterranean diet in relation to bone mineral density and risk of fracture: a systematic review and meta-analysis of observational studies. Eur J Nutr 57, 2147–2160 (2018). https://doi.org/10.1007/s00394-017-1490-3

Download citation

Keywords

  • Mediterranean diet
  • Fracture
  • Bone mineral density
  • Meta-analysis
  • Systematic review