Associations between fruit and vegetable variety and low-grade inflammation in Portuguese adolescents from LabMed Physical Activity Study

  • Juliana Almeida-de-Souza
  • Rute Santos
  • Luis Lopes
  • Sandra Abreu
  • Carla Moreira
  • Patrícia Padrão
  • Jorge Mota
  • Pedro Moreira
Original Contribution
  • 105 Downloads

Abstract

Purpose

The dietary guidelines for the consumption of a variety of fruits and vegetables have been recognized as an important factor for achieving healthy eating patterns to reduce the risk of chronic disease throughout the lifespan. Our aim is to assess the association between fruit and vegetable variety and low-grade inflammation in adolescents.

Methods

This cross-sectional analysis was conducted with 412 adolescents (ages 14.4 ± 1.7 years; 52% girls). The consumption of a variety of fruits and vegetables was assessed with a food-frequency questionnaire, considering the number of individual/category of fruit or vegetable intake at least once month, and categorized into tertiles. Blood samples were collected to determine C-reactive protein (CRP), interleukin-6 (IL-6), complement component 3 (C3), and 4 (C4). We created categories of lower or higher (inflammatory state) for each biomarker, considering sex- and age-adjusted median values. Then, we computed an overall inflammatory score, by adding all points awarded wherein one point was assigned if biomarker was higher or zero if lower, and created categories of 0–1 or 2–4 biomarkers above the median. The odds ratio (OR) and 95% interval confidence (95% CI) were calculated from binary logistic regression to estimate the magnitude of association between fruit and vegetable variety and inflammatory biomarkers.

Results

Adolescents with a greater variety of vegetable consumption (≥13 categories/month) had lower odds of having a higher CRP (OR 0.31, 95% CI 0.15–0.64, ptrend = 0.004) when compared to those with lower variety consumption (≤6 categories/month), independent of vegetable quantity intake. However, a greater variety of fruit consumption (≥12 categories/month) had higher odds of having a higher IL-6 (OR 4.41, 95% CI 1.67–11.71, ptrend = 0.012), C3 (OR 3.30, 95% CI 1.23–8.86, ptrend = 0.047), and inflammatory score (OR 4.90, 95% CI 1.62–14.86, ptrend = 0.017), when compared to those with lower variety consumption (≤9 categories/month), independent of fruit quantity intake, only for girls.

Conclusions

The consumption of a variety of vegetables is inversely associated with lower CRP. This finding supports the current dietary guidelines regarding the consumption of a variety of vegetables. The role of fruit variety in low-grade inflammation should be further studied.

Keywords

C-reactive protein Interleukin 6 Complement C3 Complement C4 Inflammatory score Variety of diet 

Supplementary material

394_2017_1479_MOESM1_ESM.docx (57 kb)
Supplementary material 1 (DOCX 56 kb)

References

  1. 1.
    Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, Esposito K, Jonsson LS, Kolb H, Lansink M, Marcos A, Margioris A, Matusheski N, Nordmann H, O’Brien J, Pugliese G, Rizkalla S, Schalkwijk C, Tuomilehto J, Warnberg J, Watzl B, Winklhofer-Roob BM (2011) Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 106(Suppl 3):S5–78. doi:10.1017/s0007114511005460 CrossRefGoogle Scholar
  2. 2.
    Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, Holgate ST, Jonsson LS, Latulippe ME, Marcos A, Moreines J, M’Rini C, Muller M, Pawelec G, van Neerven RJ, Watzl B, Zhao J (2013) A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 109(Suppl 1):S1–34. doi:10.1017/s0007114512005119 CrossRefGoogle Scholar
  3. 3.
    Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, Teeling JL, Blaak EE, Fenech M, Vauzour D, McArdle HJ, Kremer BH, Sterkman L, Vafeiadou K, Benedetti MM, Williams CM, Calder PC (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114(7):999–1012. doi:10.1017/s0007114515002093 CrossRefGoogle Scholar
  4. 4.
    Pawelec G, Goldeck D, Derhovanessian E (2014) Inflammation, ageing and chronic disease. Curr Opin Immunol 29:23–28. doi:10.1016/j.coi.2014.03.007 CrossRefGoogle Scholar
  5. 5.
    van Greevenbroek MM, Schalkwijk CG, Stehouwer CD (2013) Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med 71(4):174–187Google Scholar
  6. 6.
    Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52(3):812–817CrossRefGoogle Scholar
  7. 7.
    Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96(9):939–949. doi:10.1161/01.res.0000163635.62927.34 CrossRefGoogle Scholar
  8. 8.
    Libby P (2012) History of discovery: inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32(9):2045–2051. doi:10.1161/ATVBAHA.108.179705 CrossRefGoogle Scholar
  9. 9.
    Fernandes JV, Cobucci RN, Jatoba CA, Fernandes TA, de Azevedo JW, de Araujo JM (2015) The role of the mediators of inflammation in cancer development. Pathol Oncology Res: POR 21(3):527–534. doi:10.1007/s12253-015-9913-z CrossRefGoogle Scholar
  10. 10.
    Ostan R, Lanzarini C, Pini E, Scurti M, Vianello D, Bertarelli C, Fabbri C, Izzi M, Palmas G, Biondi F, Martucci M, Bellavista E, Salvioli S, Capri M, Franceschi C, Santoro A (2015) Inflammaging and cancer: a challenge for the Mediterranean diet. Nutrients 7(4):2589–2621. doi:10.3390/nu7042589 CrossRefGoogle Scholar
  11. 11.
    Ford ES, Galuska DA, Gillespie C, Will JC, Giles WH, Dietz WH (2001) C-reactive protein and body mass index in children: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. J Pediatr 138(4):486–492. doi:10.1067/mpd.2001.112898 CrossRefGoogle Scholar
  12. 12.
    Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB (2001) Low-grade systemic inflammation in overweight children. Pediatrics 107(1):E13CrossRefGoogle Scholar
  13. 13.
    Galcheva SV, Iotova VM, Yotov YT, Bernasconi S, Street ME (2011) Circulating proinflammatory peptides related to abdominal adiposity and cardiometabolic risk factors in healthy prepubertal children. Eur J Endocrinol/Eur Fed Endocr Soc 164(4):553–558. doi:10.1530/eje-10-1124 CrossRefGoogle Scholar
  14. 14.
    Warnberg J, Nova E, Moreno LA, Romeo J, Mesana MI, Ruiz JR, Ortega FB, Sjostrom M, Bueno M, Marcos A (2006) Inflammatory proteins are related to total and abdominal adiposity in a healthy adolescent population: the AVENA study. Am J Clin Nutr 84(3):505–512Google Scholar
  15. 15.
    Ford ES, Ajani UA, Mokdad AH (2005) The metabolic syndrome and concentrations of C-reactive protein among U.S. youth. Diabetes Care 28(4):878–881CrossRefGoogle Scholar
  16. 16.
    Lambert M, Delvin EE, Paradis G, O’Loughlin J, Hanley JA, Levy E (2004) C-reactive protein and features of the metabolic syndrome in a population-based sample of children and adolescents. Clin Chem 50(10):1762–1768. doi:10.1373/clinchem.2004.036418 CrossRefGoogle Scholar
  17. 17.
    Jarvisalo MJ, Harmoinen A, Hakanen M, Paakkunainen U, Viikari J, Hartiala J, Lehtimaki T, Simell O, Raitakari OT (2002) Elevated serum C-reactive protein levels and early arterial changes in healthy children. Arterioscler Thromb Vasc Biol 22(8):1323–1328CrossRefGoogle Scholar
  18. 18.
    Montagnese C, Santarpia L, Buonifacio M, Nardelli A, Caldara AR, Silvestri E, Contaldo F, Pasanisi F (2015) European food-based dietary guidelines: a comparison and update. Nutrition (Burbank, Los Angeles County, Calif) 31(7–8):908–915. doi:10.1016/j.nut.2015.01.002 CrossRefGoogle Scholar
  19. 19.
    World Health Organization (2003) Food based dietary guidelines in the WHO European Region. Denmark, CopenhagenGoogle Scholar
  20. 20.
    U.S. Department of Health and Human Services, and U.S. Department of Agriculture (2015) 2015–2020 dietary guidelines for Americans, 8th edn. US Government Printing Office, Washington DCGoogle Scholar
  21. 21.
    Bhupathiraju SN, Wedick NM, Pan A, Manson JE, Rexrode KM, Willett WC, Rimm EB, Hu FB (2013) Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr 98(6):1514–1523. doi:10.3945/ajcn.113.066381 CrossRefGoogle Scholar
  22. 22.
    Oude Griep LM, Verschuren WM, Kromhout D, Ocke MC, Geleijnse JM (2012) Variety in fruit and vegetable consumption and 10-year incidence of CHD and stroke. Public Health Nutr 15(12):2280–2286. doi:10.1017/s1368980012000912 CrossRefGoogle Scholar
  23. 23.
    Buchner FL, Bueno-de-Mesquita HB, Ros MM, Kampman E, Egevad L, Overvad K, Tjonneland A, Roswall N, Clavel-Chapelon F, Boutron-Ruault MC, Touillaud M, Kaaks R, Chang-Claude J, Boeing H, Weikert S, Trichopoulou A, Naska A, Benetou V, Palli D, Sieri S, Vineis P, Tumino R, Panico S, van Duijnhoven FJ, Peeters PH, van Gils CH, Lund E, Gram IT, Sanchez MJ, Jakszyn P, Larranaga N, Ardanaz E, Navarro C, Rodriguez L, Manjer J, Ehrnstrom R, Hallmans G, Ljungberg B, Key TJ, Allen NE, Khaw KT, Wareham N, Slimani N, Jenab M, Boffetta P, Kiemeney LA, Riboli E (2011) Variety in vegetable and fruit consumption and risk of bladder cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 128(12):2971–2979. doi:10.1002/ijc.25636 CrossRefGoogle Scholar
  24. 24.
    Cooper AJ, Sharp SJ, Lentjes MA, Luben RN, Khaw KT, Wareham NJ, Forouhi NG (2012) A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 35(6):1293–1300. doi:10.2337/dc11-2388 CrossRefGoogle Scholar
  25. 25.
    Jansen MC, Bueno-de-Mesquita HB, Feskens EJ, Streppel MT, Kok FJ, Kromhout D (2004) Quantity and variety of fruit and vegetable consumption and cancer risk. Nutr Cancer 48(2):142–148. doi:10.1207/s15327914nc4802_3 CrossRefGoogle Scholar
  26. 26.
    Buchner FL, Bueno-de-Mesquita HB, Ros MM, Overvad K, Dahm CC, Hansen L, Tjonneland A, Clavel-Chapelon F, Boutron-Ruault MC, Touillaud M, Kaaks R, Rohrmann S, Boeing H, Nothlings U, Trichopoulou A, Zylis D, Dilis V, Palli D, Sieri S, Vineis P, Tumino R, Panico S, Peeters PH, van Gils CH, Lund E, Gram IT, Braaten T, Sanchez MJ, Agudo A, Larranaga N, Ardanaz E, Navarro C, Arguelles MV, Manjer J, Wirfalt E, Hallmans G, Rasmuson T, Key TJ, Khaw KT, Wareham N, Slimani N, Vergnaud AC, Xun WW, Kiemeney LA, Riboli E (2010) Variety in fruit and vegetable consumption and the risk of lung cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomark Prev A Pub Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 19(9):2278–2286. doi:10.1158/1055-9965.epi-10-0489 CrossRefGoogle Scholar
  27. 27.
    Kosti RI, Panagiotakos DB (2006) The epidemic of obesity in children and adolescents in the world. Cent Eur J Public Health 14(4):151–159Google Scholar
  28. 28.
    De Ferranti SD, Osganian SK (2007) Epidemiology of paediatric metabolic syndrome and type 2 diabetes mellitus. Diabetes Vasc Dis Res 4(4):285–296. doi:10.3132/dvdr.2007.055 CrossRefGoogle Scholar
  29. 29.
    Lock K, Pomerleau J, Causer L, Altmann DR, McKee M (2005) The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy on diet. Bull World Health Organ 83(2):100–108. doi:10.1590/S0042-96862005000200010 Google Scholar
  30. 30.
    Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Muller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51(6):637–663. doi:10.1007/s00394-012-0380-y CrossRefGoogle Scholar
  31. 31.
    Lynch C, Kristjansdottir AG, Te Velde SJ, Lien N, Roos E, Thorsdottir I, Krawinkel M, de Almeida MD, Papadaki A, Hlastan Ribic C, Petrova S, Ehrenblad B, Halldorsson TI, Poortvliet E, Yngve A (2014) Fruit and vegetable consumption in a sample of 11-year-old children in ten European countries—the PRO GREENS cross-sectional survey. Public Health Nutr 17(11):2436–2444. doi:10.1017/s1368980014001347 CrossRefGoogle Scholar
  32. 32.
    Al Ani MF, Al Subhi LK, Bose S (2016) Consumption of fruits and vegetables among adolescents: a multi-national comparison of eleven countries in the Eastern Mediterranean Region. Br J Nutr 115(6):1092–1099. doi:10.1017/s0007114515005371 CrossRefGoogle Scholar
  33. 33.
    Kimmons J, Gillespie C, Seymour J, Serdula M, Blanck HM (2009) Fruit and vegetable intake among adolescents and adults in the United States: percentage meeting individualized recommendations. Medscape J Med 11(1):26Google Scholar
  34. 34.
    Guenther PM, Dodd KW, Reedy J, Krebs-Smith SM (2006) Most Americans eat much less than recommended amounts of fruits and vegetables. J Am Diet Assoc 106(9):1371–1379. doi:10.1016/j.jada.2006.06.002 CrossRefGoogle Scholar
  35. 35.
    Agostinis-Sobrinho C, Santos R, Moreira C, Abreu S, Lopes L, Oliveira-Santos J, Rosario R, Povoas S, Mota J (2016) Association between serum adiponectin levels and muscular fitness in Portuguese adolescents: LabMed Physical Activity Study. Nutr Metab Cardiovasc Dis NMCD. doi:10.1016/j.numecd.2016.02.011 Google Scholar
  36. 36.
    Oliveira-Santos J, Santos R, Moreira C, Abreu S, Lopes L, Agostinis C, Mota J (2016) Ability of measures of adiposity in identifying adverse levels of inflammatory and metabolic markers in adolescents. Child Obes (Print) 12(2):135–143. doi:10.1089/chi.2015.0124 CrossRefGoogle Scholar
  37. 37.
    Trost SG, Loprinzi PD, Moore R, Pfeiffer KA (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc 43(7):1360–1368. doi:10.1249/MSS.0b013e318206476e CrossRefGoogle Scholar
  38. 38.
    Lopes C, Aro A, Azevedo A, Ramos E, Barros H (2007) Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male Portuguese community sample. J Am Diet Assoc 107(2):276–286. doi:10.1016/j.jada.2006.11.008 CrossRefGoogle Scholar
  39. 39.
    Silva D, Rego C, Guerra A (2004) Characterization of food habits and comparative study between two methods of food assessment in adolescents. Rev Aliment Humana 10:33–40Google Scholar
  40. 40.
    Martins I, Porto A, Luísa O (2006) Table composition of foods. National Institute of Health Dr Ricardo Jorge, LisbonGoogle Scholar
  41. 41.
    Ferreira F, Graça M (1985) Composition table of Portuguese food, 2nd edn. National Institute of Health Dr Ricardo Jorge, LisbonGoogle Scholar
  42. 42.
    Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, Prentice AM (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45(12):569–581Google Scholar
  43. 43.
    Black AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord J Int Assoc Study Obes 24(9):1119–1130CrossRefGoogle Scholar
  44. 44.
    Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39(Suppl 1):5–41Google Scholar
  45. 45.
    Trost SG, Ward DS, Moorehead SM, Watson PD, Riner W, Burke JR (1998) Validity of the computer science and applications (CSA) activity monitor in children. Med Sci Sports Exerc 30(4):629–633CrossRefGoogle Scholar
  46. 46.
    Thompson FE, Willis GB, Thompson OM, Yaroch AL (2011) The meaning of ‘fruits’ and ‘vegetables’. Public Health Nutr 14(7):1222–1228. doi:10.1017/s136898001000368x CrossRefGoogle Scholar
  47. 47.
    Roark RA, Niederhauser VP (2013) Fruit and vegetable intake: issues with definition and measurement. Public Health Nutr 16(1):2–7. doi:10.1017/s1368980012000985 CrossRefGoogle Scholar
  48. 48.
    Cole TJ, Lobstein T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7(4):284–294. doi:10.1111/j.2047-6310.2012.00064.x CrossRefGoogle Scholar
  49. 49.
    Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51(3):170–179CrossRefGoogle Scholar
  50. 50.
    Currie C, Molcho M, Boyce W, Holstein B, Torsheim T, Richter M (2008) Researching health inequalities in adolescents: the development of the Health Behaviour in School-Aged Children (HBSC) family affluence scale. Soc Sci Med (1982) 66(6):1429–1436. doi:10.1016/j.socscimed.2007.11.024 CrossRefGoogle Scholar
  51. 51.
    World Health Organization (1998) Guidelines for controlling and monitoring the tobacco epidemic. World Health Organization, GenevaGoogle Scholar
  52. 52.
    Slavin JL, Lloyd B (2012) Health benefits of fruits and vegetables. Adv Nutr (Bethesda, Md) 3(4):506–516. doi:10.3945/an.112.002154 CrossRefGoogle Scholar
  53. 53.
    Krebs-Smith SM, Kantor LS (2001) Choose a variety of fruits and vegetables daily: understanding the complexities. The Journal of nutrition 131(2s-1):487s–501sGoogle Scholar
  54. 54.
    Padayatty SJ, Levine M (2008) Fruit and vegetables: think variety, go ahead, eat! Am J Clin Nutr 87(1):5–7Google Scholar
  55. 55.
    Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12 Suppl):3479s–3485sGoogle Scholar
  56. 56.
    Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res(New York, NY) 34(11):907–929. doi:10.1016/j.nutres.2014.07.010 Google Scholar
  57. 57.
    Rosa FT, Zulet MA, Marchini JS, Martinez JA (2012) Bioactive compounds with effects on inflammation markers in humans. Int J Food Sci Nutr 63(6):749–765. doi:10.3109/09637486.2011.649250 CrossRefGoogle Scholar
  58. 58.
    Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(3 Suppl):517s–520sGoogle Scholar
  59. 59.
    Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A (2015) A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 7(7):5177–5216. doi:10.3390/nu7075177 CrossRefGoogle Scholar
  60. 60.
    Soeki T, Sata M (2016) Inflammatory biomarkers and atherosclerosis. Int Heart J 57(2):134–139. doi:10.1536/ihj.15-346 CrossRefGoogle Scholar
  61. 61.
    Chun OK, Chung SJ, Claycombe KJ, Song WO (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J Nutr 138(4):753–760Google Scholar
  62. 62.
    Julia C, Galan P, Touvier M, Meunier N, Papet I, Sapin V, Cano N, Faure P, Hercberg S, Kesse-Guyot E (2014) Antioxidant status and the risk of elevated C-reactive protein 12 years later. Ann Nutr Metab 65(4):289–298. doi:10.1159/000363194 CrossRefGoogle Scholar
  63. 63.
    Raynor HA, Osterholt KM (2012) Greater variety of fruit served in a four-course snack increases fruit consumption. Appetite 59(3):662–667. doi:10.1016/j.appet.2012.08.003 CrossRefGoogle Scholar
  64. 64.
    Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC (2006) Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr 84(6):1489–1497Google Scholar
  65. 65.
    Holt EM, Steffen LM, Moran A, Basu S, Steinberger J, Ross JA, Hong CP, Sinaiko AR (2009) Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc 109(3):414–421. doi:10.1016/j.jada.2008.11.036 CrossRefGoogle Scholar
  66. 66.
    Root MM, McGinn MC, Nieman DC, Henson DA, Heinz SA, Shanely RA, Knab AM, Jin F (2012) Combined fruit and vegetable intake is correlated with improved inflammatory and oxidant status from a cross-sectional study in a community setting. Nutrients 4(1):29–41. doi:10.3390/nu4010029 CrossRefGoogle Scholar
  67. 67.
    Wannamethee SG, Lowe GD, Rumley A, Bruckdorfer KR, Whincup PH (2006) Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr 83(3):567–574 (quiz 726–567) Google Scholar
  68. 68.
    Salas-Salvado J, Garcia-Arellano A, Estruch R, Marquez-Sandoval F, Corella D, Fiol M, Gomez-Gracia E, Vinoles E, Aros F, Herrera C, Lahoz C, Lapetra J, Perona JS, Munoz-Aguado D, Martinez-Gonzalez MA, Ros E (2008) Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur J Clin Nutr 62(5):651–659. doi:10.1038/sj.ejcn.1602762 CrossRefGoogle Scholar
  69. 69.
    Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772CrossRefGoogle Scholar
  70. 70.
    Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, Rubin SM, Ding J, Simonsick EM, Harris TB, Pahor M (2003) Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation 108(19):2317–2322. doi:10.1161/01.cir.0000097109.90783.fc CrossRefGoogle Scholar
  71. 71.
    Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JE, Shah T, Sofat R, Guo Y, Chung C, Peasey A, Pfister R, Mooijaart SP, Ireland HA, Leusink M, Langenberg C, Li KW, Palmen J, Howard P, Cooper JA, Drenos F, Hardy J, Nalls MA, Li YR, Lowe G, Stewart M, Bielinski SJ, Peto J, Timpson NJ, Gallacher J, Dunlop M, Houlston R, Tomlinson I, Tzoulaki I, Luan J, Boer JM, Forouhi NG, Onland-Moret NC, van der Schouw YT, Schnabel RB, Hubacek JA, Kubinova R, Baceviciene M, Tamosiunas A, Pajak A, Topor-Madry R, Malyutina S, Baldassarre D, Sennblad B, Tremoli E, de Faire U, Ferrucci L, Bandenelli S, Tanaka T, Meschia JF, Singleton A, Navis G, Mateo Leach I, Bakker SJ, Gansevoort RT, Ford I, Epstein SE, Burnett MS, Devaney JM, Jukema JW, Westendorp RG, Jan de Borst G, van der Graaf Y, de Jong PA, Mailand-van der Zee AH, Klungel OH, de Boer A, Doevendans PA, Stephens JW, Eaton CB, Robinson JG, Manson JE, Fowkes FG, Frayling TM, Price JF, Whincup PH, Morris RW, Lawlor DA, Smith GD, Ben-Shlomo Y, Redline S, Lange LA, Kumari M, Wareham NJ, Verschuren WM, Benjamin EJ, Whittaker JC, Hamsten A, Dudbridge F, Delaney JA, Wong A, Kuh D, Hardy R, Castillo BA, Connolly JJ, van der Harst P, Brunner EJ, Marmot MG, Wassel CL, Humphries SE, Talmud PJ, Kivimaki M, Asselbergs FW, Voevoda M, Bobak M, Pikhart H, Wilson JG, Hakonarson H, Reiner AP, Keating BJ, Sattar N, Hingorani AD, Casas JP (2012) The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet (London, England) 379(9822):1214–1224. doi:10.1016/s0140-6736(12)60110-x
  72. 72.
    Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, Engert JC, Clarke R, Davey-Smith G, Nordestgaard BG, Saleheen D, Samani NJ, Sandhu M, Anand S, Pepys MB, Smeeth L, Whittaker J, Casas JP, Thompson SG, Hingorani AD, Danesh J (2011) Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ (Clin Res Ed) 342:d548. doi:10.1136/bmj.d548 CrossRefGoogle Scholar
  73. 73.
    Bhupathiraju SN, Tucker KL (2011) Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults. Am J Clin Nutr 93(1):37–46. doi:10.3945/ajcn.2010.29913 CrossRefGoogle Scholar
  74. 74.
    Dominguez Coello S, Cabrera de Leon A, Rodriguez Perez MC, Borges Alamo C, Carrillo Fernandez L, Almeida Gonzalez D, Garcia Yanes J, Gonzalez Hernandez A, Brito Diaz B, Aguirre-Jaime A (2010) Association between glycemic index, glycemic load, and fructose with insulin resistance: the CDC of the Canary Islands study. Eur J Nutr 49(8):505–512. doi:10.1007/s00394-010-0110-2 CrossRefGoogle Scholar
  75. 75.
    Aeberli I, Hochuli M, Gerber PA, Sze L, Murer SB, Tappy L, Spinas GA, Berneis K (2013) Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 36(1):150–156CrossRefGoogle Scholar
  76. 76.
    Aeberli I, Gerber PA, Hochuli M, Kohler S, Haile SR, Gouni-Berthold I, Berthold HK, Spinas GA, Berneis K (2011) Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr 94(2):479–485CrossRefGoogle Scholar
  77. 77.
    Stanhope KL (2016) Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci 53(1):52–67. doi:10.3109/10408363.2015.1084990 CrossRefGoogle Scholar
  78. 78.
    Martinez-Gomez D, Eisenmann JC, Warnberg J, Gomez-Martinez S, Veses A, Veiga OL, Marcos A (2010) Associations of physical activity, cardiorespiratory fitness and fatness with low-grade inflammation in adolescents: the AFINOS study. Int J Obes (2005) 34(10):1501–1507. doi:10.1038/ijo.2010.114 CrossRefGoogle Scholar
  79. 79.
    Perez CM, Ortiz AP, Fuentes-Mattei E, Velazquez-Torres G, Santiago D, Giovannetti K, Bernabe R, Lee MH, Yeung SC (2014) High prevalence of cardiometabolic risk factors in Hispanic adolescents: correlations with adipocytokines and markers of inflammation. J Immigr Minority Health/Center for Minority Public Health 16(5):865–873. doi:10.1007/s10903-013-9866-9 CrossRefGoogle Scholar
  80. 80.
    Raynor HA, Epstein LH (2001) Dietary variety, energy regulation, and obesity. Psychol Bull 127(3):325–341CrossRefGoogle Scholar
  81. 81.
    Thompson FE, Byers T (1994) Dietary assessment resource manual. J Nutr 124(11 Suppl):2245s–2317sGoogle Scholar
  82. 82.
    Hebert JR, Clemow L, Pbert L, Ockene IS, Ockene JK (1995) Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int J Epidemiol 24(2):389–398CrossRefGoogle Scholar
  83. 83.
    Ye X, Bhupathiraju SN, Tucker KL (2013) Variety in fruit and vegetable intake and cognitive function in middle-aged and older Puerto Rican adults. Br J Nutr 109(3):503–510. doi:10.1017/s0007114512001183 CrossRefGoogle Scholar
  84. 84.
    Conklin AI, Forouhi NG, Suhrcke M, Surtees P, Wareham NJ, Monsivais P (2014) Variety more than quantity of fruit and vegetable intake varies by socioeconomic status and financial hardship. Findings from older adults in the EPIC cohort. Appetite 83:248–255. doi:10.1016/j.appet.2014.08.038 CrossRefGoogle Scholar
  85. 85.
    Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511CrossRefGoogle Scholar
  86. 86.
    Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N (2010) Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme 35(6):725–740. doi:10.1139/h10-079 CrossRefGoogle Scholar
  87. 87.
    Nimmo MA, Leggate M, Viana JL, King JA (2013) The effect of physical activity on mediators of inflammation. Diabetes Obes Metab 15(Suppl 3):51–60. doi:10.1111/dom.12156 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of HealthPolytechnic Institute of BragançaBragançaPortugal
  2. 2.Faculty of Nutrition and Food SciencesUniversity of PortoPortoPortugal
  3. 3.Research Centre in Physical Activity, Health and Leisure, Faculty of SportUniversity of PortoPortoPortugal
  4. 4.Early Start Research InstituteUniversity of WollongongWollongongAustralia
  5. 5.University Institute of MaiaMaiaPortugal
  6. 6.Institute of Public HealthUniversity of PortoPortoPortugal

Personalised recommendations