European Journal of Nutrition

, Volume 57, Issue 5, pp 1817–1828 | Cite as

Comparison of the effects of three different Baccaurea angulata whole fruit juice doses on plasma, aorta and liver MDA levels, antioxidant enzymes and total antioxidant capacity

  • Muhammad IbrahimEmail author
  • Maryam Abimbola Mikail
  • Idris Adewale Ahmed
  • Norazlanshah Hazali
  • Mohammad Syaiful Bahari Abdul Rasad
  • Radiah Abdul Ghani
  • Ridzwan Hashim
  • Solachuddin Jahuari Arief
  • Muhammad Lokman Md Isa
  • Samsul Draman
Original Contribution



Baccaurea angulata (common names: belimbing dayak or belimbing hutan) is a Malaysian underutilized fruit. The preliminary work on B. angulata fruit juice showed that it possesses antioxidant properties. Therefore, further work is needed to confirm the efficacy and proper dosage of B. angulata as a potential natural antioxidant. The present study was thus carried out to compare the effects of three different B. angulata whole fruit (WF) juice doses administered at nutritional doses of 0.50, 1.00 and 1.50 ml/kg/day on plasma, aorta and liver malondialdehyde (MDA) levels, antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase) as well as total antioxidant capacity in rabbits fed high-cholesterol diet.


Thirty-five male rabbits of New Zealand strain were randomly assigned to seven groups. For 12 weeks, group CH was fed 1% cholesterol diet only; group C1 was fed 1% cholesterol diet and 0.50 ml/kg/day B. angulata WF juice; group C2 was fed 1% cholesterol diet and 1.00 ml/kg/day B. angulata WF juice; group C3 was fed 1% cholesterol diet and 1.50 ml/kg/day B. angulata WF juice; group N was fed standard pellet only; group N1 was fed standard pellet and 0.50 ml/kg/day B. angulata WF juice; and group N2 was fed standard pellet and 1.00 ml/kg/day B. angulata WF juice.


The three doses reduced the formation of MDA and enhanced the expression of endogenous antioxidant enzymes. The highest dose used (1.50 ml/kg/day) was, however, seen as the most potent.


Higher doses of B. angulata juice exerted better antioxidant activity.


Antioxidant enzymes Baccaurea angulata Doses Malondialdehyde Underutilized fruit 



The authors are thankful to the Ministry of Science, Technology and Innovation (MOSTI) for funding this project (Project Nos: 06-01-08-SF0111 and 06-01-08-SF0112). The authors are also very grateful to Integrated Centre for Research Animal Care and Use (ICRACU) and Kulliyyah of Allied Health Science, IIUM for financial and technical assistances.

Compliance with ethical standards

Conflict of interest

Authors have no conflict of interests.


  1. 1.
    Wen X et al (2013) Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Rad Biol Med 65:402–410CrossRefPubMedGoogle Scholar
  2. 2.
    Azzi A (2007) Oxidative stress: a dead end or a laboratory hypothesis? Biochem Biophys Res Commun 362(2):230–232CrossRefPubMedGoogle Scholar
  3. 3.
    Heo BG et al (2014) Anticancer and antioxidant effects of extracts from different parts of indigo plant. Ind Crops Prod 56:9–16CrossRefGoogle Scholar
  4. 4.
    Nafiu MO, Salawu MO, Kazeem MI (2013) Antioxidant activity of African medicinal plants. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, Oxford, pp 787–803CrossRefGoogle Scholar
  5. 5.
    de Mello Andrade JM, Fasolo D (2014) Polyphenol antioxidants from natural sources and contribution to health promotion. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols in human health and disease. Academic Press, San Diego, pp 253–265CrossRefGoogle Scholar
  6. 6.
    Rodrigo R, Gil-Becerra D (2014) Implications of polyphenols on endogenous antioxidant defense systems in human diseases. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols in human health and disease. Academic Press, San Diego, pp 201–217CrossRefGoogle Scholar
  7. 7.
    Karppi J et al (2012) Low β-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors. Nutr Metab Cardiovasc Dis 22(10):921–928CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu Y et al (2011) Fruit consumption is associated with lower carotid intima-media thickness and C-reactive protein levels in patients with type 2 diabetes mellitus. J Am Diet Assoc 111(10):1536–1542CrossRefPubMedGoogle Scholar
  9. 9.
    Mikail MA et al (2015) Baccaurea angulata fruit inhibits lipid peroxidation and induces the increase in antioxidant enzyme activities. Eur J Nutr 55:1435–1444CrossRefPubMedGoogle Scholar
  10. 10.
    Ibrahim D et al (2013) Sub-chronic toxicological evaluation of the Baccaurea angulata (Belimbing Dayak) fruit juice in rats. Int J Appl Res Nat Prod 6(4):23–32Google Scholar
  11. 11.
    Asif Saeed M, Wahid Sabir A (2003) Effects 554 of Fagonia cretica L. constituents on various haematological parameters in rabbits. J Ethnopharmacol 85(2–3):195–200CrossRefPubMedGoogle Scholar
  12. 12.
    El-Moghazy M et al (2014) The possible effect of diets containing fish oil (omega-3) on hematological, biochemical and histopathogical alterations of rabbit liver and kidney. Biomed Prev Nutr 4(3):371–377CrossRefGoogle Scholar
  13. 13.
    Hasan ST et al (2014) Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatitis in LDL receptor deficient mice. Atherosclerosis 232(1):40–51CrossRefPubMedGoogle Scholar
  14. 14.
    Karbiner MS et al (2013) The role of oxidative stress in alterations of hematological parameters and inflammatory markers induced by early hypercholesterolemia. Life Sci 93(15):503–508CrossRefPubMedGoogle Scholar
  15. 15.
    Lai P et al (2011) Aqueous extract of Gleditsia sinensis Lam. fruits improves serum and liver lipid profiles and attenuates atherosclerosis in rabbits fed a high-fat diet. J Ethnopharmacol 137(3):1061–1066CrossRefPubMedGoogle Scholar
  16. 16.
    Zou B et al (2012) High molecular weight persimmon tannin is a potent hypolipidemic in high-cholesterol diet fed rats. Food Res Int 48(2):970–977CrossRefGoogle Scholar
  17. 17.
    Sayed AA (2012) Thymoquinone and proanthocyanidin attenuation of diabetic nephropathy in rats. Eur Rev Med Pharmacol Sci 16(6):808–815PubMedGoogle Scholar
  18. 18.
    Sayed AA, El-Shaieb KM, Mourad AF (2012) Life span extension of Caenorhabditis elegans by novel pyridopyrimidine derivative. Arch Pharm Res 35(1):69–76CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmed IA et al (2015) Antioxidant activity and phenolic profile of various morphological parts of underutilised Baccaurea angulata fruit. Food Chem 172:778–787CrossRefPubMedGoogle Scholar
  20. 20.
    Chen Y et al (2013) Probucol and cilostazol exert a combinatorial anti-atherogenic effect in cholesterol-fed rabbits. Thromb Res 132(5):565–571CrossRefPubMedGoogle Scholar
  21. 21.
    Bocanegra A et al (2006) Differential effects of konbu and nori seaweed dietary supplementation on liver glutathione status in normo- and hypercholesterolaemic growing rats. Br J Nutr 95(4):696–702CrossRefPubMedGoogle Scholar
  22. 22.
    Alimi H et al (2013) Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes. Exp Toxicol Pathol 65(4):391–396CrossRefPubMedGoogle Scholar
  23. 23.
    Klewicka E et al (2012) Protective effect of lactofermented red beetroot juice against aberrant crypt foci formation, genotoxicity of fecal water and oxidative stress induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine in rats model. Environ Toxicol Pharmacol 34(3):895–904CrossRefPubMedGoogle Scholar
  24. 24.
    Vaithiyanathan V, Mirunalini S (2013) Chemo preventive potential of fruit juice of Phyllanthus emblica Linn. (amla) against mammary cancer by altering oxidant/antioxidant status, lipid profile levels and estrogen/progesterone receptor status in female Sprague–Dawley rats. Biomed Prev Nutr 3(4):357–366CrossRefGoogle Scholar
  25. 25.
    Yuan YV, Kitts DD (2002) Dietary fat source and cholesterol interactions alter plasma lipids and tissue susceptibility to oxidation in spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. Mol Cell Biochem 232(1–2):33–47CrossRefPubMedGoogle Scholar
  26. 26.
    Jenkins JE, Medeiros DM (1993) Diets containing corn oil, coconut oil and cholesterol alter ventricular hypertrophy, dilatation and function in hearts of rats fed copper-deficient diets. J Nutr 123(6):1150–1160PubMedGoogle Scholar
  27. 27.
    Jung JH, Kim HS (2013) The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease. Food Chem Toxicol 60:404–412CrossRefPubMedGoogle Scholar
  28. 28.
    Wang X et al (2011) Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. J Pharmacol Sci 117(3):129–138CrossRefPubMedGoogle Scholar
  29. 29.
    Wang YM et al (2010) The mechanism of dietary cholesterol effects on lipids metabolism in rats. Lipids Health Dis 9:4CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vázquez-Velasco M et al (2014) Liver oxidation and inflammation in Fa/Fa rats fed glucomannan/spirulina-surimi. Food Chem 159:215–221CrossRefPubMedGoogle Scholar
  31. 31.
    Ford LD (2012) 2014 hospital compliance manual. Orion Publishing Company, LondonGoogle Scholar
  32. 32.
    Oboh G, Akinyemi AJ, Ademiluyi AO (2013) Inhibitory effect of phenolic extract from garlic on angiotensin-1 converting enzyme and cisplatin induced lipid peroxidation—in vitro. Int J Biomed Sci 9(2):98–106PubMedPubMedCentralGoogle Scholar
  33. 33.
    Oboh G, Ademosun AO (2011) Shaddock peels (Citrus maxima) phenolic extracts inhibit alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme activities: a nutraceutical approach to diabetes management. Diabetes Metab Syndr 5(3):148–152CrossRefPubMedGoogle Scholar
  34. 34.
    Ajila CM, Prasada Rao UJ (2008) Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food Chem Toxicol 46(1):303–309CrossRefPubMedGoogle Scholar
  35. 35.
    Ademosun AO, Oboh G (2012) Inhibition of acetylcholinesterase activity and Fe2+-induced lipid peroxidation in rat brain in vitro by some citrus fruit juices. J Med Food 15(5):428–434CrossRefPubMedGoogle Scholar
  36. 36.
    Hamzah RU et al (2013) Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana. Oxid Antioxid Med Sci 2(3):217–223CrossRefGoogle Scholar
  37. 37.
    Prakash D et al (2012) Antioxidant and free radical scavenging activities of some promising wild edible fruits. Int Food Res J 19(3):1109–1116Google Scholar
  38. 38.
    Ling L (2006) Hypoglycemic and antioxidative effects of Anacardium occidentale Linn. Diabetic rats. Universiti Putra Malaysia, SerdangGoogle Scholar
  39. 39.
    Eshaghi M et al (2012) Cardioprotective effect of Cornus mas fruit extract against carbon tetrachloride induced-cardiotoxicity in albino rats. J Basic Appl Sci Res 2(11):11106–11114Google Scholar
  40. 40.
    Adebayo AH et al (2011) Antioxidant activities of the leaves of Chrysophyllum albidum G. Pak J Pharm Sci 24(4):545–551PubMedGoogle Scholar
  41. 41.
    Vega-López S et al (2005) Plasma antioxidant capacity in response to diets high in soy or animal protein with or without isoflavones. Am J Clin Nutr 81(1):43–49CrossRefPubMedGoogle Scholar
  42. 42.
    Kolodgie FD et al (1996) Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol: methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type. Arterioscler Thromb Vasc Biol 16(12):1454–1464CrossRefPubMedGoogle Scholar
  43. 43.
    Sano T, Tanaka Y (1987) Effect of dried, powdered Chlorella vulgaris on experimental atherosclerosis and alimentary hypercholesterolemia in cholesterol-fed rabbits. Artery 14(2):76–84PubMedGoogle Scholar
  44. 44.
    Prasad K (1999) Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation 99(10):1355–1362CrossRefPubMedGoogle Scholar
  45. 45.
    Olorunnisola OS, Bradley G, Afolayan AJ (2012) Protective effect of T. violacea rhizome extract against hypercholesterolemia-induced oxidative stress in Wistar rats. Molecules 17(5):6033–6045CrossRefPubMedGoogle Scholar
  46. 46.
    Yang X, Yang L, Zheng H (2010) Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem Toxicol 48(8–9):2374–2379CrossRefPubMedGoogle Scholar
  47. 47.
    Usharani P, Fatima N, Muralidhar N (2013) Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab Syndr Obes 6:275–284PubMedPubMedCentralGoogle Scholar
  48. 48.
    Oyewo EB, Akanji MA, Adekunle AS (2012) Immunomodulation capabilities of aqueous leaf extract of Phyllanthus amarus in male Wistar rats. Rep Opin 4(1):22–37Google Scholar
  49. 49.
    Ajiboye TO et al (2013) Bridelia ferruginea promotes reactive oxygen species detoxification in N-nitrosodiethylamine-treated rats. J Diet Suppl 10(3):210–228CrossRefPubMedGoogle Scholar
  50. 50.
    Matsunami T et al (2010) Regulation of oxidative stress and inflammation by hepatic adiponectin receptor 2 in an animal model of nonalcoholic steatohepatitis. Int J Clin Exp Pathol 3(5):472–481PubMedPubMedCentralGoogle Scholar
  51. 51.
    Martinello F et al (2006) Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters. Food Chem Toxicol 44(6):810–818CrossRefPubMedGoogle Scholar
  52. 52.
    Saggu S et al (2014) Ameliorating effect of chicory (Cichorium intybus L.) fruit extract against 4-tert-octylphenol induced liver injury and oxidative stress in male rats. Food Chem Toxicol 72:138–146CrossRefPubMedGoogle Scholar
  53. 53.
    Anilakumar KR et al (2009) Ameliorative effect of ajwain extract on hexachlorocyclohexane-induced lipid peroxidation in rat liver. Food Chem Toxicol 47(2):279–282CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Muhammad Ibrahim
    • 1
    Email author
  • Maryam Abimbola Mikail
    • 1
  • Idris Adewale Ahmed
    • 1
    • 5
  • Norazlanshah Hazali
    • 1
  • Mohammad Syaiful Bahari Abdul Rasad
    • 1
  • Radiah Abdul Ghani
    • 1
  • Ridzwan Hashim
    • 1
  • Solachuddin Jahuari Arief
    • 2
  • Muhammad Lokman Md Isa
    • 3
  • Samsul Draman
    • 4
  1. 1.Kulliyyah of Allied Health SciencesInternational Islamic University MalaysiaKuala LumpurMalaysia
  2. 2.Kulliyyah of DentistryInternational Islamic University MalaysiaKuala LumpurMalaysia
  3. 3.Kulliyyah of NursingInternational Islamic University MalaysiaKuala LumpurMalaysia
  4. 4.Kulliyyah of MedicineInternational Islamic University MalaysiaKuala LumpurMalaysia
  5. 5.Department of Biotechnology, Faculty of ScienceLincoln University College MalaysiaPetaling JayaMalaysia

Personalised recommendations