Advertisement

European Journal of Nutrition

, Volume 57, Issue 2, pp 423–432 | Cite as

Does soy protein affect circulating levels of unbound IGF-1?

Review
  • 251 Downloads

Abstract

Introduction

Despite the enormous amount of research that has been conducted on the role of soyfoods in the prevention and treatment of chronic disease, the mechanisms by which soy exerts its physiological effects are not fully understood. The clinical data show that neither soyfoods nor soy protein nor isoflavones affect circulating levels of reproductive hormones in men or women. However, some research suggests that soy protein, but not isoflavones, affects insulin-like growth factor I (IGF-1).

Methods

Since IGF-1 may have wide-ranging physiological effects, we sought to determine the effect of soy protein on IGF-1 and its major binding protein insulin-like growth factor-binding protein (IGFBP-3). Six clinical studies were identified that compared soy protein with a control protein, albeit only two studies measured IGFBP-3 in addition to IGF-1.

Results

Although the data are difficult to interpret because of the different experimental designs employed, there is some evidence that large amounts of soy protein (>25 g/day) modestly increase IGF-1 levels above levels observed with the control protein.

Conclusion

The clinical data suggest that a decision to incorporate soy into the diet should not be based on its possible effects on IGF-1.

Keywords

Soy Isoflavones IGF-1 IGFBP-3 Cancer Clinical trials 

Notes

Authorship

MM and PM participated in all aspects of the writing of this manuscript.

Compliance with ethical standards

Financial support

None.

Conflict of interest

MM is the executive director of the Soy Nutrition Institute. PM has no conflicts of interest.

References

  1. 1.
    Oseni T, Patel R, Pyle J, Jordan VC (2008) Selective estrogen receptor modulators and phytoestrogens. Planta Med 74:1656–1665. doi: 10.1055/s-0028-1088304 CrossRefGoogle Scholar
  2. 2.
    Sirotkin AV, Harrath AH (2014) Phytoestrogens and their effects. Eur J Pharmacol 741:230–236. doi: 10.1016/j.ejphar.2014.07.057 CrossRefGoogle Scholar
  3. 3.
    Anderson JW, Bush HM (2011) Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr 30:79–91CrossRefGoogle Scholar
  4. 4.
    Dong JY, Tong X, Wu ZW, Xun PC, He K, Qin LQ (2011) Effect of soya protein on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr 106:317–326. doi: 10.1017/S0007114511000262 CrossRefGoogle Scholar
  5. 5.
    Hughes GJ, Ryan DJ, Mukherjea R, Schasteen CS (2011) Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. J Agric Food Chem 59:12707–12712. doi: 10.1021/jf203220v CrossRefGoogle Scholar
  6. 6.
    McGraw NJ, Krul ES, Grunz-Borgmann E, Parrish AR (2016) Soy-based renoprotection. World. J Nephrol 5:233–257. doi: 10.5527/wjn.v5.i3.233 Google Scholar
  7. 7.
    Hooper L, Ryder JJ, Kurzer MS, Lampe JW, Messina MJ, Phipps WR, Cassidy A (2009) Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: a systematic review and meta-analysis. Hum Reprod Update 15:423–440. doi: 10.1093/humupd/dmp010 CrossRefGoogle Scholar
  8. 8.
    Messina M (2010) Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil Steril 93:2095–2104. doi: 10.1016/j.fertnstert.2010.03.002 CrossRefGoogle Scholar
  9. 9.
    Hamilton-Reeves JM, Vazquez G, Duval SJ, Phipps WR, Kurzer MS, Messina MJ (2010) Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertil Steril 94:997–1007. doi: 10.1016/j.fertnstert.2009.04.038 CrossRefGoogle Scholar
  10. 10.
    Kelly JJ, Rajkovic IA, O’Sullivan AJ, Sernia C, Ho KK (1993) Effects of different oral oestrogen formulations on insulin-like growth factor-I, growth hormone and growth hormone binding protein in post-menopausal women. Clin Endocrinol (Oxf) 39:561–567CrossRefGoogle Scholar
  11. 11.
    Malarkey WB, Burleson M, Cacioppo JT, Poehlmann K, Glaser R, Kiecolt-Glaser JK (1997) Differential effects of estrogen and medroxyprogesterone on basal and stress-induced growth hormone release, IGF-1 levels, and cellular immunity in postmenopausal women. Endocrine 7:227–233. doi: 10.1007/BF02778145 CrossRefGoogle Scholar
  12. 12.
    Adams KF, Newton KM, Chen C, Emerson SS, Potter JD, White E, Lampe JW (2003) Soy isoflavones do not modulate circulating insulin-like growth factor concentrations in an older population in an intervention trial. J Nutr 133:1316–1319CrossRefGoogle Scholar
  13. 13.
    Hussain M, Banerjee M, Sarkar FH, Djuric Z, Pollak MN, Doerge D, Fontana J, Chinni S, Davis J, Forman J, Wood DP, Kucuk O (2003) Soy isoflavones in the treatment of prostate cancer. Nutr Cancer 47:111–117CrossRefGoogle Scholar
  14. 14.
    Delmanto A, Nahas-Neto J, Traiman P, Uemura G, Pessoa EC, Nahas EA (2013) Effects of soy isoflavones on mammographic density and breast parenchyma in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. Menopause 20:1049–1054. doi: 10.1097/GME.0b013e3182850270 CrossRefGoogle Scholar
  15. 15.
    Gann PH, Kazer R, Chatterton R, Gapstur S, Thedford K, Helenowski I, Giovanazzi S, Van Horn L (2005) Sequential, randomized trial of a low-fat, high-fiber diet and soy supplementation: effects on circulating IGF-I and its binding proteins in premenopausal women. Int J Cancer 116:297–303CrossRefGoogle Scholar
  16. 16.
    Jarrard D, Konety B, Huang W, Downs T, Kolesar J, Kim KM, Havighurst T, Slaton J, House MG, Parnes HL, Bailey HH (2016) Phase IIa, randomized placebo-controlled trial of single high dose cholecalciferol (vitamin D3) and daily Genistein (G-2535) versus double placebo in men with early stage prostate cancer undergoing prostatectomy. Am J Clin Exp Urol 4:17–27Google Scholar
  17. 17.
    Wangen KE, Duncan AM, Merz-Demlow BE, Xu X, Marcus R, Phipps WR, Kurzer MS (2000) Effects of soy isoflavones on markers of bone turnover in premenopausal and postmenopausal women. J Clin Endocrinol Metab 85:3043–3048Google Scholar
  18. 18.
    Bevilacqua M, Righini V, Certan D, Gandolini G, Alemanni M (2013) Effect of a mixture of calcium, vitamin D, inulin and soy isoflavones on bone metabolism in post-menopausal women: a retrospective analysis. Aging Clin Exp Res 25:611–617. doi: 10.1007/s40520-013-0093-y CrossRefGoogle Scholar
  19. 19.
    Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Atteritano M, Gaudio A, Mazzaferro S, Frisina A, Frisina N, Lubrano C, Bonaiuto M, D’Anna R, Cannata ML, Corrado F, Adamo EB, Wilson S, Squadrito F (2007) Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med 146:839–847CrossRefGoogle Scholar
  20. 20.
    Khalil DA, Lucas EA, Juma S, Smith BJ, Payton ME, Arjmandi BH (2002) Soy protein supplementation increases serum insulin-like growth factor-I in young and old men but does not affect markers of bone metabolism. J Nutr 132:2605–2608CrossRefGoogle Scholar
  21. 21.
    Heaney RP, McCarron DA, Dawson-Hughes B, Oparil S, Berga SL, Stern JS, Barr SI, Rosen CJ (1999) Dietary changes favorably affect bone remodeling in older adults. J Am Diet Assoc 99:1228–1233CrossRefGoogle Scholar
  22. 22.
    Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ (2002) The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomark Prev 11:1441–1448Google Scholar
  23. 23.
    Probst-Hensch NM, Wang H, Goh VH, Seow A, Lee HP, Yu MC (2003) Determinants of circulating insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations in a cohort of Singapore men and women. Cancer Epidemiol Biomark Prev 12:739–746Google Scholar
  24. 24.
    Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ (2013) The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9:366–376. doi: 10.1038/nrendo.2013.67 CrossRefGoogle Scholar
  25. 25.
    Spentzos D, Mantzoros C, Regan MM, Morrissey ME, Duggan S, Flickner-Garvey S, McCormick H, DeWolf W, Balk S, Bubley GJ (2003) Minimal effect of a low-fat/high soy diet for asymptomatic, hormonally naive prostate cancer patients. Clin Cancer Res 9:3282–3287Google Scholar
  26. 26.
    Woodside JV, Campbell MJ, Denholm EE, Newton L, Honour JW, Morton MS, Young IS, Leathem AJ (2006) Short-term phytoestrogen supplementation alters insulin-like growth factor profile but not lipid or antioxidant status. J Nutr Biochem 17:211–215. doi: 10.1016/j.jnutbio.2005.08.001 CrossRefGoogle Scholar
  27. 27.
    Li Z, Aronson WJ, Arteaga JR, Hong K, Thames G, Henning SM, Liu W, Elashoff R, Ashley JM, Heber D (2008) Feasibility of a low-fat/high-fiber diet intervention with soy supplementation in prostate cancer patients after prostatectomy. Eur J Clin Nutr 62:526–536. doi: 10.1038/sj.ejcn.1602743 CrossRefGoogle Scholar
  28. 28.
    Aronson WJ, Barnard RJ, Freedland SJ, Henning S, Elashoff D, Jardack PM, Cohen P, Heber D, Kobayashi N (2010) Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. J Urol 183:345–350. doi: 10.1016/j.juro.2009.08.104 CrossRefGoogle Scholar
  29. 29.
    Deibert P, Solleder F, Konig D, Vitolins MZ, Dickhuth HH, Gollhofer A, Berg A (2011) Soy protein based supplementation supports metabolic effects of resistance training in previously untrained middle aged males. Aging Male 14:273–279. doi: 10.3109/13685538.2011.565091 CrossRefGoogle Scholar
  30. 30.
    McLaughlin JM, Olivo-Marston S, Vitolins MZ, Bittoni M, Reeves KW, Degraffinreid CR, Schwartz SJ, Clinton SK, Paskett ED (2011) Effects of tomato- and soy-rich diets on the IGF-I hormonal network: a crossover study of postmenopausal women at high risk for breast cancer. Cancer Prev Res (Phila) 4(702–10):1940. doi: 10.1158/1940-6207.CAPR-10-0329 Google Scholar
  31. 31.
    Berg A, Schaffner D, Pohlmann Y, Baumstark MW, Deibert P, Konig D, Gollhofer A (2012) A soy-based supplement alters energy metabolism but not the exercise-induced stress response. Exerc Immunol Rev 18:128–141Google Scholar
  32. 32.
    Teas J, Irhimeh MR, Druker S, Hurley TG, Hebert JR, Savarese TM, Kurzer MS (2011) Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women. Nutr Cancer 63:743–748. doi: 10.1080/01635581.2011.579383 CrossRefGoogle Scholar
  33. 33.
    Dewell A, Weidner G, Sumner MD, Barnard RJ, Marlin RO, Daubenmier JJ, Chi C, Carroll PR, Ornish D (2007) Relationship of dietary protein and soy isoflavones to serum IGF-1 and IGF binding proteins in the prostate cancer lifestyle trial. Nutr Cancer 58:35–42. doi: 10.1080/01635580701308034 CrossRefGoogle Scholar
  34. 34.
    Maskarinec G, Takata Y, Murphy SP, Franke AA, Kaaks R (2005) Insulin-like growth factor-1 and binding protein-3 in a 2-year soya intervention among premenopausal women. Br J Nutr 94:362–367CrossRefGoogle Scholar
  35. 35.
    Wu AH, Stanczyk FZ, Martinez C, Tseng CC, Hendrich S, Murphy P, Chaikittisilpa S, Stram DO, Pike MC (2005) A controlled 2-mo dietary fat reduction and soy food supplementation study in postmenopausal women. Am J Clin Nutr 81:1133–1141CrossRefGoogle Scholar
  36. 36.
    Melnik BC (2009) Milk–the promoter of chronic Western diseases. Med Hypotheses 72:631–639. doi: 10.1016/j.mehy.2009.01.008 CrossRefGoogle Scholar
  37. 37.
    Gui JC, Brasic JR, Liu XD, Gong GY, Zhang GM, Liu CJ, Gao GQ (2012) Bone mineral density in postmenopausal Chinese women treated with calcium fortification in soymilk and cow’s milk. Osteoporos Int 23:1563–1570. doi: 10.1007/s00198-012-1895-z CrossRefGoogle Scholar
  38. 38.
    Michell NP, Dent S, Langman MJ, Eggo MC (1997) Insulin-like growth factor binding proteins as mediators of IGF-I effects on colon cancer cell proliferation. Growth Factors 14:269–277CrossRefGoogle Scholar
  39. 39.
    Brahmkhatri VP, Prasanna C, Atreya HS (2015) Insulin-like growth factor system in cancer: novel targeted therapies. Biomed Res Int 2015:538019. doi: 10.1155/2015/538019 CrossRefGoogle Scholar
  40. 40.
    Kaaks R, Johnson T, Tikk K, Sookthai D, Tjonneland A, Roswall N, Overvad K, Clavel-Chapelon F, Boutron-Ruault MC, Dossus L, Rinaldi S, Romieu I, Boeing H, Schutze M, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Grioni S, Tumino R, Sacerdote C, Panico S, Buckland G, Arguelles M, Sanchez MJ, Amiano P, Chirlaque MD, Ardanaz E, Bueno-de-Mesquita HB, van Gils CH, Peeters PH, Andersson A, Sund M, Weiderpass E, Gram IT, Lund E, Khaw KT, Wareham N, Key TJ, Travis RC, Merritt MA, Gunter MJ, Riboli E, Lukanova A (2014) Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status-A prospective study within the EPIC cohort. Int J Cancer 134:2683–2690. doi: 10.1002/ijc.28589 CrossRefGoogle Scholar
  41. 41.
    Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396CrossRefGoogle Scholar
  42. 42.
    Price AJ, Allen NE, Appleby PN, Crowe FL, Travis RC, Tipper SJ, Overvad K, Gronbaek H, Tjonneland A, Johnsen NF, Rinaldi S, Kaaks R, Lukanova A, Boeing H, Aleksandrova K, Trichopoulou A, Trichopoulos D, Andarakis G, Palli D, Krogh V, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Arguelles MV, Sanchez MJ, Chirlaque MD, Barricarte A, Larranaga N, Gonzalez CA, Stattin P, Johansson M, Khaw KT, Wareham N, Gunter M, Riboli E, Key T (2012) Insulin-like growth factor-I concentration and risk of prostate cancer: results from the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomark Prev 21:1531–1541. doi: 10.1158/1055-9965.EPI-12-0481-T CrossRefGoogle Scholar
  43. 43.
    Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279:563–566CrossRefGoogle Scholar
  44. 44.
    Singh P, Alex JM, Bast F (2014) Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 31:805. doi: 10.1007/s12032-013-0805-3 CrossRefGoogle Scholar
  45. 45.
    Yang Y, Yee D (2012) Targeting insulin and insulin-like growth factor signaling in breast cancer. J Mammary Gland Biol Neoplas 17:251–261. doi: 10.1007/s10911-012-9268-y CrossRefGoogle Scholar
  46. 46.
    Teppala S, Shankar A (2010) Association between serum IGF-1 and diabetes among U.S. adults. Diabetes Care 33:2257–2259. doi: 10.2337/dc10-0770 CrossRefGoogle Scholar
  47. 47.
    Friedrich N, Thuesen B, Jorgensen T, Juul A, Spielhagen C, Wallaschofksi H, Linneberg A (2012) The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care 35:768–773. doi: 10.2337/dc11-1833 CrossRefGoogle Scholar
  48. 48.
    Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, Crane J, Frassica F, Zhang L, Rodriguez JP, Xiaofeng J, Shoshana Y, Shouhong X, Argiris E, Mei W, Xu C (2012) Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18:1095–1101. doi: 10.1038/nm.2793 CrossRefGoogle Scholar
  49. 49.
    Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ (2017) Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc. doi: 10.1111/jgs.14722 Google Scholar
  50. 50.
    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314. doi: 10.1111/febs.12253 CrossRefGoogle Scholar
  51. 51.
    Endres JG (ed) (2001) Soy protein products. Characteristics, nutritional aspects, and utilization. AOCS Press, RockvilleGoogle Scholar
  52. 52.
    Alemany JA, Nindl BC, Kellogg MD, Tharion WJ, Young AJ, Montain SJ (2008) Effects of dietary protein content on IGF-I, testosterone, and body composition during 8 days of severe energy deficit and arduous physical activity. J Appl Physiol 105:58–64. doi: 10.1152/japplphysiol.00005.2008 CrossRefGoogle Scholar
  53. 53.
    Campbell SC, Khalil DA, Payton ME, Arjmandi BH (2010) One-year soy protein supplementation does not improve lipid profile in postmenopausal women. Menopause 17:587–593. doi: 10.1097/gme.0b013e3181cb85d3 Google Scholar
  54. 54.
    Arjmandi BH, Lucas EA, Khalil DA, Devareddy L, Smith BJ, McDonald J, Arquitt AB, Payton ME, Mason C (2005) One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women. Nutr J 4:8CrossRefGoogle Scholar
  55. 55.
    Fanti P, Asmis R, Stephenson TJ, Sawaya BP, Franke AA (2006) Positive effect of dietary soy in ESRD patients with systemic inflammation–correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrol Dial Transpl 21:2239–2246CrossRefGoogle Scholar
  56. 56.
    Baer DJ, Stote KS, Paul DR, Harris GK, Rumpler WV, Clevidence BA (2011) Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J Nutr 141:1489–1494. doi: 10.3945/jn.111.139840 CrossRefGoogle Scholar
  57. 57.
    Arjmandi BH, Khalil DA, Lucas EA, Smith BJ, Sinichi N, Hodges SB, Juma S, Munson ME, Payton ME, Tivis RD, Svanborg A (2004) Soy protein may alleviate osteoarthritis symptoms. Phytomedicine 11:567–575CrossRefGoogle Scholar
  58. 58.
    Arjmandi BH, Khalil DA, Smith BJ, Lucas EA, Juma S, Payton ME, Wild RA (2003) Soy protein has a greater effect on bone in postmenopausal women not on hormone replacement therapy, as evidenced by reducing bone resorption and urinary calcium excretion. J Clin Endocrinol Metab 88:1048–1054CrossRefGoogle Scholar
  59. 59.
    Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Investig 106:473–481. doi: 10.1172/JCI10842 CrossRefGoogle Scholar
  60. 60.
    Yang G, Shu XO, Jin F, Zhang X, Li HL, Li Q, Gao YT, Zheng W (2005) Longitudinal study of soy food intake and blood pressure among middle-aged and elderly Chinese women. Am J Clin Nutr 81:1012–1017CrossRefGoogle Scholar
  61. 61.
    Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE (2013) Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J Acad Nutr Diet 113:1610–1619. doi: 10.1016/j.jand.2013.06.349 CrossRefGoogle Scholar
  62. 62.
    Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW, Madia F, Fontana L, Mirisola MG, Guevara-Aguirre J, Wan J, Passarino G, Kennedy BK, Wei M, Cohen P, Crimmins EM, Longo VD (2014) Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 19:407–417. doi: 10.1016/j.cmet.2014.02.006 CrossRefGoogle Scholar
  63. 63.
    Hoppe C, Udam TR, Lauritzen L, Molgaard C, Juul A, Michaelsen KF (2004) Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-year-old Danish children. Am J Clin Nutr 80:447–452CrossRefGoogle Scholar
  64. 64.
    Hoppe C, Molgaard C, Dalum C, Vaag A, Michaelsen KF (2009) Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr 63:1076–1083. doi: 10.1038/ejcn.2009.34 CrossRefGoogle Scholar
  65. 65.
    Zhu K, Meng X, Kerr DA, Devine A, Solah V, Binns CW, Prince RL (2011) The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res 26:2298–2306. doi: 10.1002/jbmr.429 CrossRefGoogle Scholar
  66. 66.
    Zhang X, Shu XO, Li H, Yang G, Li Q, Gao YT, Zheng W (2005) Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med 165:1890–1895CrossRefGoogle Scholar
  67. 67.
    Koh WP, Wu AH, Wang R, Ang LW, Heng D, Yuan JM, Yu MC (2009) Gender-specific associations between soy and risk of hip fracture in the Singapore Chinese health study. Am J Epidemiol 170:901–909. doi: 10.1093/aje/kwp220 CrossRefGoogle Scholar
  68. 68.
    Matthews VL, Knutsen SF, Beeson WL, Fraser GE (2011) Soy milk and dairy consumption is independently associated with ultrasound attenuation of the heel bone among postmenopausal women: the Adventist Health Study-2. Nutr Res 31:766–775. doi: 10.1016/j.nutres.2011.09.016 CrossRefGoogle Scholar
  69. 69.
    Pawlowski JW, Martin BR, McCabe GP, McCabe L, Jackson GS, Peacock M, Barnes S, Weaver CM (2015) Impact of equol-producing capacity and soy-isoflavone profiles of supplements on bone calcium retention in postmenopausal women: a randomized crossover trial. Am J Clin Nutr 102:695–703. doi: 10.3945/ajcn.114.093906 CrossRefGoogle Scholar
  70. 70.
    Alekel DL, Van Loan MD, Koehler KJ, Hanson LN, Stewart JW, Hanson KB, Kurzer MS, Peterson CT (2010) The soy isoflavones for reducing bone loss (SIRBL) study: a 3-y randomized controlled trial in postmenopausal women. Am J Clin Nutr 91:218–230. doi: 10.3945/ajcn.2009.28306 CrossRefGoogle Scholar
  71. 71.
    Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J (2011) Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms: a randomized, double-blind trial. Arch Intern Med 171:1363–1369. doi: 10.1001/archinternmed.2011.330 CrossRefGoogle Scholar
  72. 72.
    Tai TY, Tsai KS, Tu ST, Wu JS, Chang CI, Chen CL, Shaw NS, Peng HY, Wang SY, Wu CH (2012) The effect of soy isoflavone on bone mineral density in postmenopausal Taiwanese women with bone loss: a 2-year randomized double-blind placebo-controlled study. Osteoporos Int 23:1571–1580. doi: 10.1007/s00198-011-1750-7 CrossRefGoogle Scholar
  73. 73.
    Marini H, Bitto A, Altavilla D, Burnett BP, Polito F, Di Stefano V, Minutoli L, Atteritano M, Levy RM, D’Anna R, Frisina N, Mazzaferro S, Cancellieri F, Cannata ML, Corrado F, Frisina A, Adamo V, Lubrano C, Sansotta C, Marini R, Adamo EB, Squadrito F (2008) Breast safety and efficacy of genistein aglycone for postmenopausal bone loss: a follow-up study. J Clin Endocrinol Metab 93:4787–4796. doi: 10.1210/jc.2008-1087 CrossRefGoogle Scholar
  74. 74.
    Xie Q, Chen ML, Qin Y, Zhang QY, Xu HX, Zhou Y, Mi MT, Zhu JD (2013) Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac J Clin Nutr 22:118–127. doi: 10.6133/apjcn.2013.22.1.16 Google Scholar
  75. 75.
    Yan L, Spitznagel EL (2009) Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr 89:1155–1163. doi: 10.3945/ajcn.2008.27029 CrossRefGoogle Scholar
  76. 76.
    Zhang M, Wang K, Chen L, Yin B, Song Y (2016) Is phytoestrogen intake associated with decreased risk of prostate cancer? A systematic review of epidemiological studies based on 17,546 cases. Andrology 4:745–756. doi: 10.1111/andr.12196 CrossRefGoogle Scholar
  77. 77.
    Zhang Q, Feng H, Qluwakemi B et al. (2017) Phytoestrogens and risk of prostate cancer: an updated meta-analysis of epidemiologic studies. Int J Food Sci Nutr 68:28–42.CrossRefGoogle Scholar
  78. 78.
    Messina M, Caan BJ, Abrams DI, Hardy M, Maskarinec G (2013) It’s time for clinicians to reconsider their proscription against the use of soyfoods by breast cancer patients. Oncology (Williston Park) 27:430–437Google Scholar
  79. 79.
    Magee PJ, Rowland I (2012) Soy products in the management of breast cancer. Curr Opin Clin Nutr Metab Care 15:586–591. doi: 10.1097/MCO.0b013e328359156f CrossRefGoogle Scholar
  80. 80.
    Wu AH, Spicer D, Garcia A, Tseng CC, Hovanessian-Larsen L, Sheth P, Martin SE, Hawes D, Russell C, MacDonald H, Tripathy D, Su MY, Ursin G, Pike MC (2015) Double-blind randomized 12-month soy intervention had no effects on breast MRI fibroglandular tissue density or mammographic density. Cancer Prev Res (Phila) 8:942–951. doi: 10.1158/1940-6207.CAPR-15-0125 CrossRefGoogle Scholar
  81. 81.
    Messina M, Kucuk O, Lampe JW (2006) An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate-specific antigen levels. J AOAC Int 89:1121–1134Google Scholar
  82. 82.
    van Die MD, Bone KM, Williams SG, Pirotta MV (2014) Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int 113:E119–E130. doi: 10.1111/bju.12435 CrossRefGoogle Scholar
  83. 83.
    Chanson P, Arnoux A, Mavromati M, Brailly-Tabard S, Massart C, Young J, Piketty ML, Souberbielle JC (2016) Reference values for IGF-I serum concentrations: comparison of six immunoassays. J Clin Endocrinol Metab 101:3450–3458. doi: 10.1210/jc.2016-1257 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Soy Nutrition InstituteSt.LouisUSA
  2. 2.Human Nutrition, Northern Ireland Centre for Food and Health (NICHE)University of UlsterColeraineUK
  3. 3.PittsfieldUSA

Personalised recommendations