Skip to main content

Advertisement

Log in

Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Although there is good evidence showing that diets rich in medium chain fatty acids (MCFAs) have less marked obesogenic and diabetogenic effects than diets rich in long chain fatty acids (LCFAs), the role of the pro-inflammatory, medium chain fatty acid receptor (GPR84) in the aetiology of obesity and glucose intolerance is not well characterised. We set out to determine whether GPR84 expression influences obesity and glucose intolerance susceptibility in MCFA and LCFA rich diet fed mice.

Methods

Wild type (WT) and GPR84 knockout (KO) mice were fed a control, MCFA or LCFA diet, and body mass, heart, liver and epididymal fat mass was assessed, as well as glucose tolerance and adipocyte size.

Results

LCFA diets increased body mass and decreased glucose tolerance in both WT and GPR84 KO animals while MCFA diets had no effect on these parameters. There were no differences in body weight when comparing WT and GPR84 KO mice on the respective diets. Glucose tolerance was also similar in WT and GPR84 KO mice irrespective of diet. Liver mass was increased following LCFA feeding in WT but not GPR84 KO mice. Hepatic triglyceride content was increased in GPR84 KO animals fed MCFA, and myocardial triglyceride content was increased in GPR84 KO animals fed LCFA.

Conclusions

GPR84 deletion had no effects on body weight or glucose tolerance in mice fed either a high MCFA or LCFA diet. GPR84 may influence lipid metabolism, as GPR84 KO mice had smaller livers and increased myocardial triglyceride accumulation when fed LCFA diets, and increased liver triglyceride accumulation in responses to increased dietary MCFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Scholmerich J, Bollheimer LC (2006) Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 36(3):485–501. doi:10.1677/jme.1.01909

    Article  CAS  PubMed  Google Scholar 

  2. Han J, Hamilton JA, Kirkland JL, Corkey BE, Guo W (2003) Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes Res 11(6):734–744. doi:10.1038/oby.2003.103

    Article  CAS  PubMed  Google Scholar 

  3. Han JR, Deng B, Sun J, Chen CG, Corkey BE, Kirkland JL, Ma J, Guo W (2007) Effects of dietary medium-chain triglyceride on weight loss and insulin sensitivity in a group of moderately overweight free-living type 2 diabetic Chinese subjects. Metabolism 56(7):985–991. doi:10.1016/j.metabol.2007.03.005

    Article  CAS  PubMed  Google Scholar 

  4. Shinohara H, Ogawa A, Kasai M, Aoyama T (2005) Effect of randomly interesterified triacylglycerols containing medium- and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats. Biosci Biotechnol Biochem 69(10):1811–1818. doi:10.1271/bbb.69.1811

    Article  CAS  PubMed  Google Scholar 

  5. Turner N, Hariharan K, TidAng J, Frangioudakis G, Beale SM, Wright LE, Zeng XY, Leslie SJ, Li JY, Kraegen EW, Cooney GJ, Ye JM (2009) Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent: potent tissue-specific effects of medium-chain fatty acids. Diabetes 58(11):2547–2554. doi:10.2337/db09-0784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papamandjaris AA, MacDougall DE, Jones PJ (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62(14):1203–1215

    Article  CAS  PubMed  Google Scholar 

  7. Haversen L, Danielsson KN, Fogelstrand L, Wiklund O (2009) Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202(2):382–393. doi:10.1016/j.atherosclerosis.2008.05.033

    Article  CAS  PubMed  Google Scholar 

  8. Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, Kimura I, Leloire A, Liu N, Iida K, Choquet H, Besnard P, Lecoeur C, Vivequin S, Ayukawa K, Takeuchi M, Ozawa K, Tauber M, Maffeis C, Morandi A, Buzzetti R, Elliott P, Pouta A, Jarvelin MR, Korner A, Kiess W, Pigeyre M, Caiazzo R, Van Hul W, Van Gaal L, Horber F, Balkau B, Levy-Marchal C, Rouskas K, Kouvatsi A, Hebebrand J, Hinney A, Scherag A, Pattou F, Meyre D, Koshimizu TA, Wolowczuk I, Tsujimoto G, Froguel P (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483(7389):350–354. doi:10.1038/nature10798

    Article  CAS  PubMed  Google Scholar 

  9. Montgomery MK, Osborne B, Brown SH, Small L, Mitchell TW, Cooney GJ, Turner N (2013) Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. J Lipid Res 54(12):3322–3333. doi:10.1194/jlr.M040451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. St-Onge MP, Jones PJ (2002) Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr 132(3):329–332

    Article  CAS  PubMed  Google Scholar 

  11. Papamandjaris AA, White MD, Jones PJ (1999) Components of total energy expenditure in healthy young women are not affected after 14 days of feeding with medium-versus long-chain triglycerides. Obes Res 7(3):273–280

    Article  CAS  PubMed  Google Scholar 

  12. St-Onge MP, Bosarge A (2008) Weight-loss diet that includes consumption of medium-chain triacylglycerol oil leads to a greater rate of weight and fat mass loss than does olive oil. Am J Clin Nutr 87(3):621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. St-Onge MP, Ross R, Parsons WD, Jones PJ (2003) Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes Res 11(3):395–402. doi:10.1038/oby.2003.53

    Article  CAS  PubMed  Google Scholar 

  14. White MD, Papamandjaris AA, Jones PJ (1999) Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 d in premenopausal women. Am J Clin Nutr 69(5):883–889

    Article  CAS  PubMed  Google Scholar 

  15. Scalfi L, Coltorti A, Contaldo F (1991) Postprandial thermogenesis in lean and obese subjects after meals supplemented with medium-chain and long-chain triglycerides. Am J Clin Nutr 53(5):1130–1133

    Article  CAS  PubMed  Google Scholar 

  16. Geliebter A, Torbay N, Bracco EF, Hashim SA, Van Itallie TB (1983) Overfeeding with medium-chain triglyceride diet results in diminished deposition of fat. Am J Clin Nutr 37(1):1–4

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281(45):34457–34464. doi:10.1074/jbc.M608019200

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T, Oda T (2013) Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem 288(15):10684–10691. doi:10.1074/jbc.M112.420042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouchard C, Page J, Bedard A, Tremblay P, Vallieres L (2007) G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia 55(8):790–800. doi:10.1002/glia.20506

    Article  PubMed  Google Scholar 

  20. Yousefi S, Cooper PR, Potter SL, Mueck B, Jarai G (2001) Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes. J Leukoc Biol 69(6):1045–1052

    CAS  PubMed  Google Scholar 

  21. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ (2008) Expression analysis of G Protein-coupled receptors in mouse macrophages. Immunome Res 4:5. doi:10.1186/1745-7580-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagasaki H, Kondo T, Fuchigami M, Hashimoto H, Sugimura Y, Ozaki N, Arima H, Ota A, Oiso Y, Hamada Y (2012) Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFalpha enhances GPR84 expression in adipocytes. FEBS Lett 586(4):368–372. doi:10.1016/j.febslet.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  23. Bellahcene M, O’Dowd JF, Wargent ET, Zaibi MS, Hislop DC, Ngala RA, Smith DM, Cawthorne MA, Stocker CJ, Arch JR (2013) Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr 109(10):1755–1764. doi:10.1017/S0007114512003923

    Article  CAS  PubMed  Google Scholar 

  24. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698. doi:10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly YM (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300(1):E211–E220. doi:10.1152/ajpendo.00229.2010

    Article  CAS  PubMed  Google Scholar 

  26. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. doi:10.1038/ncomms2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alquier T, Peyot ML, Latour MG, Kebede M, Sorensen CM, Gesta S, Ronald Kahn C, Smith RD, Jetton TL, Metz TO, Prentki M, Poitout V (2009) Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 58(11):2607–2615. doi:10.2337/db09-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G, Gustafson EL, Hedrick JA, Davis HR (2008) Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes 57(11):2999–3006. doi:10.2337/db08-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vogel-van De, den Bosch J, van den Berg SA, Bijland S, Voshol PJ, Havekes LM, Romijn HA, Hoeks J, van Beurden D, Hesselink MK, Schrauwen P, van Dijk KW (2011) High-fat diets rich in medium- versus long-chain fatty acids induce distinct patterns of tissue specific insulin resistance. J Nutr Biochem 22(4):366–371. doi:10.1016/j.jnutbio.2010.03.004

    Article  CAS  Google Scholar 

  30. Hwang SG, Yano H, Kawashima R (1992) The influence of dietary medium and long chain triglycerides on growth performances and fat deposition in growing rats. J Nutr Sci Vitaminol 38(2):127–139

    Article  CAS  PubMed  Google Scholar 

  31. Hwang SG, Yano H, Kawashima R (1993) Influence of dietary medium- and long-chain triglycerides on fat deposition and lipogenic enzyme activities in rats. J Am Coll Nutr 12(6):643–650

    Article  CAS  PubMed  Google Scholar 

  32. Baba N, Bracco EF, Hashim SA (1982) Enhanced thermogenesis and diminished deposition of fat in response to overfeeding with diet containing medium chain triglyceride. Am J Clin Nutr 35(4):678–682

    Article  CAS  PubMed  Google Scholar 

  33. Perez CJ, Dumas A, Vallieres L, Guenet JL, Benavides F (2013) Several classical mouse inbred strains, including DBA/2, NOD/Lt, FVB/N, and SJL/J, carry a putative loss-of-function allele of Gpr84. J Hered 104(4):565–571. doi:10.1093/jhered/est023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anunciado-Koza RP, Higgins DC, Koza RA (2016) Adipose tissue Mest and Sfrp5 are concomitant with variations of adiposity among inbred mouse strains fed a non-obesogenic diet. Biochimie 124:134–140. doi:10.1016/j.biochi.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  35. Parks BW, Sallam T, Mehrabian M, Psychogios N, Hui ST, Norheim F, Castellani LW, Rau CD, Pan C, Phun J, Zhou Z, Yang WP, Neuhaus I, Gargalovic PS, Kirchgessner TG, Graham M, Lee R, Tontonoz P, Gerszten RE, Hevener AL, Lusis AJ (2015) Genetic architecture of insulin resistance in the mouse. Cell Metab 21(2):334–346. doi:10.1016/j.cmet.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nicol LS, Dawes JM, La Russa F, Didangelos A, Clark AK, Gentry C, Grist J, Davies JB, Malcangio M, McMahon SB (2015) The role of G-protein receptor 84 in experimental neuropathic pain. J Neurosci 35(23):8959–8969. doi:10.1523/JNEUROSCI.3558-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Audoy-Remus J, Bozoyan L, Dumas A, Filali M, Lecours C, Lacroix S, Rivest S, Tremblay ME, Vallieres L (2015) GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer’s disease. Brain Behav Immun 46:112–120. doi:10.1016/j.bbi.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  38. Madeddu S, Woods TA, Mukherjee P, Sturdevant D, Butchi NB, Peterson KE (2015) Identification of glial activation markers by comparison of transcriptome changes between astrocytes and microglia following innate immune stimulation. PLoS ONE 10(7):e0127336. doi:10.1371/journal.pone.0127336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Health and Medical Research Council (Australia) Program Grant 1071659 to MPJ

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Peak.

Ethics declarations

Ethical standards

This study was approved by the Griffith University Animal Ethics Committee, under protocol GUAEC/GLY/06/14 and was conducted to comply with the Australian Code for the Care and Use of Animals for Scientific Purposes, 8th edition (2013).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du Toit, E., Browne, L., Irving-Rodgers, H. et al. Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets. Eur J Nutr 57, 1737–1746 (2018). https://doi.org/10.1007/s00394-017-1456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1456-5

Keywords

Navigation