Skip to main content

Advertisement

Log in

Effect of 8-weeks prebiotics/probiotics supplementation on alcohol metabolism and blood biomarkers of healthy adults: a pilot study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Modulating gut bacteria via regular prebiotics/probiotics consumption may improve the metabolism of acute alcohol ingestion. This study investigated the impact of 8-weeks prebiotics/probiotics supplementation on microbiome changes and responses to acute alcohol consumption.

Methods

38 participants (21 females, 23.6 ± 3.4 kg m−2, mean ± SD) attended the laboratory on two occasions separated by an 8-week intervention period. On each of these visits, a dose of alcohol (0.40 ± 0.04 g kg−1, Vodka + Soda-Water) was consumed over 10 min. Breath alcohol concentration was sampled over 5 h and alcohol pharmacokinetics was analysed using WinNonlin non-compartmental modelling (C max, t max, AUClast). For the intervention, participants were randomised to receive Placebo + Placebo (PLA), Placebo + Prebiotics (PRE), Probiotics + Placebo (PRO), or Probiotics + Prebiotics (SYN) in a double-blinded manner. Probiotics were a commercially available source of Lactobacillus acidophilus (NCFM®) and Bifidobacterium lactis (Bi-07). Prebiotics were a commercially available source of Larch Gum (from Larix occidentalis). Placebo was microcrystalline cellulose. Each visit, participants provided a stool sample, which was analysed to determine the presence of L. acidophilus and B. lactis. Differences between trials were analysed using paired samples t tests.

Results

Increased counts for at least one bacterial strain (L. acidophilus or B. lactis) were observed for all participants on SYN (n = 10) and PRO (n = 10) trials. No difference in C max or t max was observed between trials when analysed by treatment condition or microbiome outcome. A significant decrease in AUClast was observed between trials for PLA (p = 0.039) and PRE (p = 0.030) treatments, and when increases in at least one bacterial strain (p = 0.003) and no microbiome changes (p = 0.016) were observed.

Conclusion

Consumption of probiotics appears to alter faecal counts of supplemental bacterial strains in otherwise healthy individuals. However, translation to any possible beneficial impact on alcohol metabolism remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2014) Global status report on alcohol and health 2014. World Health Organization, Geneva

    Google Scholar 

  2. Collins DJ, Lapsley HM (2008) The costs of tobacco, alcohol and illicit drug abuse to Australian society in 2004/05. Australian Government Department of Health and Ageing, Canberra, A.C.T

  3. Sacks JJ, Gonzales KR, Bouchery EE, Tomedi LE, Brewer RD (2015) 2010 National and State Costs of Excessive Alcohol Consumption. Am J Prev Med 49(5):73–79. doi:10.1016/j.amepre.2015.05.031

    Article  Google Scholar 

  4. Eckardt MJ, File SE, Gessa GL, Grant KA, Guerri C, Hoffman PL, Kalant H, Koob GF, Li TK, Tabakoff B (1998) Effects of moderate alcohol consumption on the central nervous system. Alcohol Clin Exp Res 22(5):998–1040

    Article  CAS  PubMed  Google Scholar 

  5. Kent W (2012) The pharmacokinetics of alcohol in healthy adults. WebmedCentral. Pharmacology 3:1–8

    Google Scholar 

  6. Lieber CS (2005) Metabolism of alcohol. Clin Liver Dis 9(1):1–35. doi:10.1016/j.cld.2004.10.005

    Article  PubMed  Google Scholar 

  7. Salaspuro M (1996) Bacteriocolonic pathway for ethanol oxidation: characteristics and implications. Ann Med 28(3):195–200. doi:10.3109/07853899609033120

    Article  CAS  PubMed  Google Scholar 

  8. Halsted CH, Robles EA, Mezey E (1973) Distribution of ethanol in the human gastrointestinal tract. Am J Clin Nutr 26(8):831–834

    Article  CAS  PubMed  Google Scholar 

  9. Norberg A, Jones AW, Hahn RG, Gabrielsson JL (2003) Role of variability in explaining ethanol pharmacokinetics - Research and forensic applications. Clin Pharmacokinet 42(1):1–31

    Article  CAS  PubMed  Google Scholar 

  10. Jokelainen K, Matysiak-Budnik T, Mäkisalo H, Höckerstedt K, Salaspuro M (1996) High intracolonic acetaldehyde values produced by a bacteriocolonic pathway for ethanol oxidation in piglets. Gut 39(1):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones AW, Jonsson KA (1994) Between-subject and within-subject variations in the pharmacokinetics of ethanol. Br J Clin Pharmacol 37(5):427–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wagner JG, Wilkinson PK, Sedman AJ, Kay DR, Weidler DJ (1976) Elimination of alcohol from human blood. J Pharm Sci 65(1):152–154

    Article  CAS  PubMed  Google Scholar 

  13. Yin SJ, Liao CS, Lee YC, Wu CW, Jao SW (1994) Genetic polymorphism and activities of human colon alcohol and aldehyde dehydrogenases: no gender and age differences. Alcohol Clin Exp Res 18(5):1256–1260

    Article  CAS  PubMed  Google Scholar 

  14. Baraona E, Julkunen R, Tannenbaum L, Lieber CS (1986) Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology 90(1):103–110

    Article  CAS  PubMed  Google Scholar 

  15. Nosova T, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M (2000) Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcohol 35(6):561–568

    Article  CAS  PubMed  Google Scholar 

  16. Konkit M, Choi WJ, Kim W (2016) Aldehyde dehydrogenase activity in Lactococcus chungangensis: Application in cream cheese to reduce aldehyde in alcohol metabolism. J Dairy Sci 99(3):1755–1761. doi:10.3168/jds.2015-10549

    Article  CAS  PubMed  Google Scholar 

  17. Kim J, Kim H, Son J, Chun H, Yang J, Choi S, Paek N, Choi G, Kim S (2003) Effect of Lactobacillus fermentum MG590 on alcohol metabolism and liver function in rats. J Microbiol Biotechnol 13(6):919–925

    Google Scholar 

  18. Sumi H, Yatagai C, Wada H, Yoshida E, Maruyama M (1995) Effect of Bacillus natto-fermented product (BIOZYME) on blood alcohol, aldehyde concentrations after whisky drinking in human volunteers, and acute toxicity of acetaldehyde in mice. Jpn J Alcohol Stud Drug Depend 30(2):69–79

    CAS  Google Scholar 

  19. Soccol C, Vandenberghe L, Spier M, Medeiros A, Yamaguishi C, Lindner J, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Technol Biotechnol 48(4):413–434

    CAS  Google Scholar 

  20. Khalesi S, Sun J, Buys N, Jayasinghe R (2014) Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64(4):897–903. doi:10.1161/HYPERTENSIONAHA.114.03469

    Article  CAS  PubMed  Google Scholar 

  21. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275. doi:10.1079/NRR200479

    Article  CAS  PubMed  Google Scholar 

  22. Cortot A, Jobin G, Ducrot F, Aymes C, Giraudeaux V, Modigliani R (1986) Gastric emptying and gastrointestinal absorption of alcohol ingested with a meal. Dig Dis Sci 31(4):343–348

    Article  CAS  PubMed  Google Scholar 

  23. Holt S (1981) Observations on the relation between alcohol absorption and the rate of gastric emptying. Can Med Assoc J 124(3):267–297

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pikaar N, Wedel M, Hermus R (1988) Influence of several factors on blood alcohol concentrations after drinking alcohol. Alcohol Alcohol 23(4):289–297

    CAS  PubMed  Google Scholar 

  25. Cederbaum AI (2012) Alcohol metabolism. Clin Liver Dis 16(4):667–685. doi:10.1016/j.cld.2012.08.002

    Article  Google Scholar 

  26. Oneta CM, Simanowski UA, Martinez M, Allali-Hassani A, Parés X, Homann N, Conradt C, Waldherr R, Fiehn W, Coutelle C, Seitz HK (1998) First pass metabolism of ethanol is strikingly influenced by the speed of gastric emptying. Gut 43(5):612–619. doi:10.1136/gut.43.5.612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lieber CS, Gentry RT, Baraona E (1994) First pass metabolism of ethanol. Alcohol Alcohol 2:163–169

    CAS  Google Scholar 

  28. Couch RD, Dailey A, Zaidi F, Navarro K, Forsyth CB, Mutlu E, Engen PA, Keshavarzian A (2015) Alcohol induced alterations to the human fecal VOC metabolome. PloS one 10(3):1–24. doi:10.1371/journal.pone.0119362

    Article  CAS  Google Scholar 

  29. Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A (2015) The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res Curr Rev 37(2):223–236

  30. van Zanten GC, Krych L, Röytiö H, Forssten S, Lahtinen SJ, Al-Soud WA, Sørensen S, Svensson B, Jespersen L, Jakobsen M (2014) Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial. FEMS Microbiol Ecol 90(1):225–236. doi:10.1111/1574-6941.12397

    Article  CAS  PubMed  Google Scholar 

  31. Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88(S1):39–49. doi:10.1079/BJN2002628

    Article  CAS  Google Scholar 

  32. Selzer M, Vinokur A, van Rooijen L (1975) A self-administered short Michigan alcoholism screening test (SMAST). J Stud Alcohol 36(1):117–126

    Article  CAS  PubMed  Google Scholar 

  33. Vogel-Sprott M (1992) Alcohol tolerance and social drinking: learning the consequences, vol 15. Guilford Press, New York

    Google Scholar 

  34. Khalesi S, Sharma S, Irwin C, Sun J (2016) Dietary patterns, nutrition knowledge and lifestyle: associations with blood pressure in a sample of Australian adults (the Food BP study). J Hum Hypertens 30(10):581–590. doi:10.1038/jhh.2016.22

    Article  CAS  PubMed  Google Scholar 

  35. Khalesi S, Doshi D, Buys N, Sun J (2016) Validation of a short food frequency questionnaire in Australian adults. Int J Food Sci Nutr 1–9. doi:10.1080/09637486.2016.1240763

    Article  PubMed  Google Scholar 

  36. Watson PE, Watson ID, Batt RD (1981) Prediction of blood alcohol concentrations in human subjects. Updating the Widmark Equation. J Stud Alcohol 42(7):547–556

    Article  CAS  PubMed  Google Scholar 

  37. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148(1):257–266. doi:10.1099/00221287-148-1-257

    Article  CAS  PubMed  Google Scholar 

  38. Malinen E, Kassinen A, Rinttila T, Palva A (2003) Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149(1):269–277. doi:10.1099/mic.0.25975-0

    Article  CAS  PubMed  Google Scholar 

  39. Marsh-Richard DM, Hatzis ES, Mathias CW, Venditti N, Dougherty DM (2009) Adaptive Visual Analog Scales (AVAS): a modifiable software program for the creation, administration, and scoring of visual analog scales. Behav Res Methods 41(1):99–106. doi:10.3758/BRM.41.1.99

    Article  PubMed  PubMed Central  Google Scholar 

  40. Irwin C, Shum D, Desbrow B, Leveritt M (2014) Comparing the effects of alcohol mixed with artificially-sweetened and carbohydrate containing beverages on breath alcohol concentration. J Alcohol Drug Educ 58(2):27–45

    Google Scholar 

  41. Marczinski CA, Stamates AL (2013) Artificial sweeteners versus regular mixers increase breath alcohol concentrations in male and female social drinkers. Alcohol Clin Exp Res 37(4):696–702. doi:10.1111/acer.12039

    Article  CAS  PubMed  Google Scholar 

  42. Cohen J (1988) Statistical Power Analysis for Behavioral Sciences Routledge, New York, NY

  43. Hedges LV (1981) Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat 6:107–128

    Article  Google Scholar 

  44. Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4:863. doi:10.3389/fpsyg.2013.00863

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O (2016) Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome. Medicine (Baltimore) 8(1):52–63. doi:10.1186/s13073-016-0300-5

    Article  CAS  Google Scholar 

  46. Gilliland SE, Speck ML, Nauyok GF Jr., Giesbrecht FG Influence of Consuming Nonfermented Milk Containing Lactobacillus acidophilus on Fecal Flora of Healthy Males. J Dairy Sci 61 (1):1–10. doi:10.3168/jds.S0022-0302(78)83543-7

  47. Greene JD, Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl Environ Microbiol 60(12):4487–4494

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Larsen N, Vogensen FK, Michaelsen KF, Jakobsen M The Effect of L. acidophilus NCFM® and B. lactis Bi-07 on the diversity of lactobacilli and bifidobacteria in the human intestinal tract. In: 3rd International Probiotic Conference, High Tatras, Slovakia., 4–7 June 2008. p 40

  49. Sui J, Leighton S, Busta F, Brady L (2002) 16 S ribosomal DNA analysis of the faecal lactobacilli composition of human subjects consuming a probiotic strain Lactobacillus acidophilus NCFM. J Appl Microbiol 93(5):907–912

    Article  CAS  PubMed  Google Scholar 

  50. van Zanten GC, Knudsen A, Röytiö H, Forssten S, Lawther M, Blennow A, Lahtinen SJ, Jakobsen M, Svensson B, Jespersen L (2012) The effect of selected synbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon. PloS one 7(10):e47212. doi:10.1371/journal.pone.0047212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varcoe J, Zook C, Sui J, Leighton S, Busta F, Brady L (2002) Variable response to exogenous Lactobacillus acidophilus NCFM consumed in different delivery vehicles. J Appl Microbiol 93(5):900–906

    Article  CAS  PubMed  Google Scholar 

  52. Marshall AW, Kingstone D, Boss M, Morgan MY (1983) Ethanol elimination in males and females: relationship to menstrual cycle and body composition. Hepatology 3(5):701–706

    Article  CAS  PubMed  Google Scholar 

  53. DiRienzo DB (2014) Effect of probiotics on biomarkers of cardiovascular disease: implications for heart-healthy diets. Nutr Rev 72(1):18–29. doi:10.1111/nure.12084

    Article  PubMed  Google Scholar 

  54. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:1–14. doi:10.1155/2012/902917

    Article  CAS  Google Scholar 

  55. Cho YA, Kim J (2015) Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 94(43):1–10. doi:10.1097/md.0000000000001714

    Article  Google Scholar 

  56. Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, Bazhukova TA, Soloviev AG, Barve SS, McClain CJ, Cave M (2008) Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 42(8):675–682. doi:10.1016/j.alcohol.2008.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma YY, Li L, Yu CH, Shen Z, Chen LH, Li YM (2013) Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol 19(40):6911–6918. doi:10.3748/wjg.v19.i40.6911

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pham M, Lemberg DA, Day AS (2008) Probiotics: sorting the evidence from the myths. Med J Aust 189(3):182–182

    Google Scholar 

  59. Ritchie ML, Romanuk TN (2012) A meta-analysis of probiotic efficacy for gastrointestinal diseases. PloS one 7(4):e34938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2016) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 1–15. doi:10.1002/mnfr.201600240

Download references

Acknowledgements

This study was supported with funding from a Griffith University internal School project grant. Probiotics, prebiotics, and placebo supplements were generously provided by Health World Limited. Health World Limited had no responsibility for the design, process, or outcomes of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Irwin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study was conducted according to the guidelines laid down in the 1964 Declaration of Helsinki and all procedures involving human subjects/patients were approved by the University’s Human Research Ethics Committee (Protocol No: AHS/74/14/HREC). Written informed consent was obtained from all subjects/patients.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irwin, C., Khalesi, S., Cox, A.J. et al. Effect of 8-weeks prebiotics/probiotics supplementation on alcohol metabolism and blood biomarkers of healthy adults: a pilot study. Eur J Nutr 57, 1523–1534 (2018). https://doi.org/10.1007/s00394-017-1437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1437-8

Keywords

Navigation