Skip to main content

Advertisement

Log in

Fructooligosaccharide intake promotes epigenetic changes in the intestinal mucosa in growing and ageing rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the relationship between fructooligosaccharide (FOS) intake at different life stages of Wistar rats and its stimulatory effects on intestinal parameters.

Methods

Recently weaned and ageing female rats were divided into growing and ageing treatments, which were fed diets that partially replaced sucrose with FOS for 12 weeks.

Results

Dietary FOS intake induced a significant increase in the numbers of Bifidobacterium and Lactobacillus in growing rats. FOS intake was associated with increased butyric acid levels and a reduced pH of the caecal contents at both ages. Differential gene expression patterns were observed by microarray analysis of growing and ageing animals fed the FOS diet. A total of 133 genes showed detectable changes in expression in the growing rats, while there were only 19 gene expression changes in ageing rats fed with FOS.

Conclusion

These results suggest that dietary FOS intake may be beneficial for some parameters of intestinal health in growing rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Leotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63. doi:10.1017/S0007114510003363

    Article  CAS  PubMed  Google Scholar 

  2. Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308. doi:10.1177/1756283x13482996

    Article  Google Scholar 

  3. Bosscher D, Breynaert A, Pieters L, Hermans N (2009) Food-based strategies to modulate the composition of the intestinal microbiota and their associated health effects. J Physiol Pharmacol 60(Suppl 6):5–11

    PubMed  Google Scholar 

  4. Steed H, Macfarlane S (2009) Mechanisms of prebiotic impact on health. In: Charalampopoulos D, Rastall R (eds) Prebiotics and probiotics science and technology. Springer, New York, pp 135–161. doi:10.1007/978-0-387-79058-9_5

    Chapter  Google Scholar 

  5. Ogawa H, Rafiee P, Fisher PJ, Johnson NA, Otterson MF, Binion DG (2003) Butyrate modulates gene and protein expression in human intestinal endothelial cells. Biochem Biophys Res Commun 309(3):512–519

    Article  CAS  PubMed  Google Scholar 

  6. Miller SJ, Zaloga GP, Hoggatt AM, Labarrere C, Faulk WP (2005) Short-chain fatty acids modulate gene expression for vascular endothelial cell adhesion molecules. Nutrition 21(6):740–748. doi:10.1016/j.nut.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  7. Daly K, Shirazi-Beechey SP (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25(1):49–62. doi:10.1089/dna.2006.25.49

    Article  CAS  PubMed  Google Scholar 

  8. Gaudier E, Jarry A, Blottiere HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C, Hoebler C (2004) Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 287(6):G1168–G1174. doi:10.1152/ajpgi.00219.2004

    Article  CAS  PubMed  Google Scholar 

  9. Vanhoutvin SA, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DM, Kodde A, Venema K, Brummer RJ (2009) Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One 4(8):e6759. doi:10.1371/journal.pone.0006759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanderson IR (2004) Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J Nutr 134(9):2450S–2454S (pii:134/9/2450S)

    Article  Google Scholar 

  11. Sanderson IR, Naik S (2000) Dietary regulation of intestinal gene expression. Annu Rev Nutr 20:311–338. doi:10.1146/annurev.nutr.20.1.311

    Article  CAS  PubMed  Google Scholar 

  12. Debusk RM, Fogarty CP, Ordovas JM, Kornman KS (2005) Nutritional genomics in practice: where do we begin? J Am Diet Assoc 105(4):589–598. doi:10.1016/j.jada.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    Article  CAS  PubMed  Google Scholar 

  14. Lima de Albuquerque C, Comalada M, Camuesco D, Rodríguez-Cabezas ME, Luiz-Ferreira A, Nieto A, Monteiro de Souza Brito AR, Zarzuelo A, Gálvez J (2010) Effect of kale and papaya supplementation in colitis induced by trinitrobenzenesulfonic acid in the rat. e-SPEN 5(3):e111–e116. doi:10.1016/j.eclnm.2009.12.002

    Article  Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao G, Nyman M, Jonsson JA (2006) Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr 20(8):674–682. doi:10.1002/bmc.580

    Article  CAS  PubMed  Google Scholar 

  17. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. doi:10.1186/gb-2004-5-10-r80

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolczuk K, Wilczynska B, Jaroszewska M, Kobak J (2011) Morphometric characteristics of the small and large intestines of Mus musculus during postnatal development. Folia Morphol (Warsz) 70 (4):252–259

    CAS  Google Scholar 

  19. Ames BN, Shigenaga MK, Hagen TM (1995) Mitochondrial decay in aging. Biochim Biophys Acta 1271(1):165–170

    Article  PubMed  Google Scholar 

  20. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285(5432):1390–1393

    Article  CAS  PubMed  Google Scholar 

  21. Gudiel-Urbano M, Goñi I (2002) Effect of fructooligosaccharide on nutritional parameters and mineral bioavailability in rats. J Sci Food Agric 82(8):913–917. doi:10.1002/jsfa.1133

    Article  CAS  Google Scholar 

  22. Nakamura S, Kondo N, Yamaguchi Y, Hashiguchi M, Tanabe K, Ushiroda C, Kawahashi-Tokuhisa M, Yui K, Miyakoda M, Oku T (2014) Daily feeding of fructooligosaccharide or glucomannan delays onset of senescence in SAMP8 mice. Gastroenterol Res Pract 2014:11. doi:10.1155/2014/303184

    Article  Google Scholar 

  23. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80(6):1658–1664

    Article  CAS  PubMed  Google Scholar 

  24. Whelan K, Judd PA, Preedy VR, Simmering R, Jann A, Taylor MA (2005) Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans. J Nutr 135(8):1896–1902

    Article  CAS  PubMed  Google Scholar 

  25. Toward R, Montandon S, Walton G, Gibson GR (2012) Effect of prebiotics on the human gut microbiota of elderly persons. Gut Microbes 3(1):57–60. doi:10.4161/gmic.19411

    Article  PubMed  Google Scholar 

  26. Lara-Villoslada F, de Haro O, Camuesco D, Comalada M, Velasco J, Zarzuelo A, Xaus J, Galvez J (2006) Short-chain fructooligosaccharides, in spite of being fermented in the upper part of the large intestine, have anti-inflammatory activity in the TNBS model of colitis. Eur J Nutr 45(7):418–425. doi:10.1007/s00394-006-0610-2

    Article  CAS  PubMed  Google Scholar 

  27. Pan XD, Chen FQ, Wu TX, Tang HG, Zhao ZY (2009) Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J Zhejiang Univ Sci B 10(4):258–263. doi:10.1631/jzus.B0820261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243

    Article  CAS  PubMed  Google Scholar 

  29. Samal L, Chaturvedi VB, Saikumar G, Somvanshi R, Pattanaik AK (2014) Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus) in Wistar rats: effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. J Sci Food Agric. doi:10.1002/jsfa.6873

    Article  PubMed  Google Scholar 

  30. Wijnands MV, Schoterman HC, Bruijntjes JB, Hollanders VM, Woutersen RA (2001) Effect of dietary galacto-oligosaccharides on azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer 344 rats. Carcinogenesis 22(1):127–132

    Article  CAS  PubMed  Google Scholar 

  31. Parnell JA, Reimer RA (2010) Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: a dose-response study in JCR:LA-cp rats. Br J Nutr 103(11):1577–1584. doi:10.1017/S0007114509993539

    Article  CAS  PubMed  Google Scholar 

  32. Nilsson U, Nyman M (2005) Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility. Br J Nutr 94(5):705–713

    Article  CAS  PubMed  Google Scholar 

  33. Juskiewicz J, Glazka I, Krol B, Zdunczyk Z (2006) Effect of chicory products with different inulin content on rat caecum physiology. J Anim Physiol Anim Nutr (Berl) 90(5–6):200–207. doi:10.1111/j.1439-0396.2005.00591.x

    Article  CAS  Google Scholar 

  34. Xu C, Chen X, Ji C, Ma Q, Hao K (2005) Study of the application of fructooligosaccharides in piglets. Asian Aust J Anim Sci 18(7):1011–1016

    Article  CAS  Google Scholar 

  35. Le Blay G, Michel C, Blottière HM, Cherbut C (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J Nutr 129(12):2231–2235

    Article  CAS  PubMed  Google Scholar 

  36. Mishiro T, Kusunoki R, Otani A, Ansary MMU, Tongu M, Harashima N, Yamada T, Sato S, Amano Y, Itoh K, Ishihara S, Kinoshita Y (2013) Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. Lab Invest 93(7):834–843. doi:10.1038/labinvest.2013.70

    Article  CAS  PubMed  Google Scholar 

  37. Xiao M, Liu YG, Zou MC, Zou F (2014) Sodium butyrate induces apoptosis of human colon cancer cells by modulating ERK and sphingosine kinase 2. Biomed Environ Sci 27(3):197–203. doi:10.3967/bes2014.040

    Article  CAS  PubMed  Google Scholar 

  38. Saldanha SN, Kala R, Tollefsbol TO (2014) Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp Cell Res 324(1):40–53. doi:10.1016/j.yexcr.2014.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Willemsen LEM, Koetsier MA, van Deventer SJH, van Tol EAF (2003) Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E-1 and E-2 production by intestinal myofibroblasts. Gut 52(10):1442–1447. doi:10.1136/gut.52.10.1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng L, Li Z-R, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in caco-2 cell monolayers. J Nutr 139(9):1619–1625. doi:10.3945/jn.109.104638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elamin EE, Masclee AA, Dekker J, Pieters H-J, Jonkers DM (2013) Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in caco-2 cell monolayers. J Nutr 143(12):1872–1881. doi:10.3945/jn.113.179549

    Article  CAS  PubMed  Google Scholar 

  42. Comalada M, Bailon E, de Haro O, Lara-Villoslada F, Xaus J, Zarzuelo A, Galvez J (2006) The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J Cancer Res Clin Oncol 132(8):487–497. doi:10.1007/s00432-006-0092-x

    Article  CAS  PubMed  Google Scholar 

  43. Ichikawa H, Shineha R, Satomi S, Sakata T (2002) Gastric or rectal instillation of short-chain fatty acids stimulates epithelial cell proliferation of small and large intestine in rats. Dig Dis Sci 47(5):1141–1146

    Article  CAS  PubMed  Google Scholar 

  44. Tsukahara T, Iwasaki Y, Nakayama K, Ushida K (2003) Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J Nutr Sci Vitaminol (Tokyo) 49(6):414–421

    Article  CAS  Google Scholar 

  45. Ashraf S, Zaneb H, Yousaf MS, Ijaz A, Sohail MU, Muti S, Usman MM, Ijaz S, Rehman H (2013) Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J Anim Physiol Anim Nutr (Berl) 97(Suppl 1):68–73. doi:10.1111/jpn.12041

    Article  Google Scholar 

  46. Adil S, Banday T, Bhat GA, Mir MS, Rehman M (2010) Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet Med Int. doi:10.4061/2010/479485

    Article  PubMed  PubMed Central  Google Scholar 

  47. Clarke RM (1977) The effects of age on mucosal morphology and epithelial cell production in rat small intestine. J Anat 123(Pt 3):805–811

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuzmuk KN, Swanson KS, Tappenden KA, Schook LB, Fahey GC (2005) Diet and age affect intestinal morphology and large bowel fermentative end-product concentrations in senior and young adult dogs. J Nutr 135(8):1940–1945

    Article  CAS  PubMed  Google Scholar 

  49. Tahiri M, Tressol JC, Arnaud J, Bornet F, Bouteloup-Demange C, Feillet-Coudray C, Ducros V, Pépin D, Brouns F, Roussel AM, Rayssiguier Y, Coudray C (2001) Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 16(11):2152–2160. doi:10.1359/jbmr.2001.16.11.2152

    Article  CAS  PubMed  Google Scholar 

  50. Hardwick LL, Jones MR, Brautbar N, Lee DB (1991) Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J Nutr 121(1):13–23

    Article  CAS  PubMed  Google Scholar 

  51. Mathers JC (2006) Nutritional modulation of ageing: genomic and epigenetic approaches. Mech Ageing Dev 127(6):584–589. doi:10.1016/j.mad.2006.01.018

    Article  CAS  PubMed  Google Scholar 

  52. Ogawa H, Rafiee P, Fisher PJ, Johnson NA, Otterson MF, Binion DG (2003) Butyrate modulates gene and protein expression in human intestinal endothelial cells. Biochem Biophys Res Commun 309(3):512–519. doi:10.1016/j.bbrc.2003.08.026

    Article  CAS  PubMed  Google Scholar 

  53. Sanderson IR (1998) Dietary regulation of genes expressed in the developing intestinal epithelium. Am J Clin Nutr 68(5):999–1005

    Article  CAS  PubMed  Google Scholar 

  54. Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8(3):131–136

    Article  CAS  PubMed  Google Scholar 

  55. Miller RA (1996) The aging immune system: primer and prospectus. Science 273(5271):70–74

    Article  CAS  PubMed  Google Scholar 

  56. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV (1990) Organization of the human and mouse low-affinity Fc gamma R genes: duplication and recombination. Science 248(4956):732–735

    Article  CAS  PubMed  Google Scholar 

  58. Delgado GT, Thome R, Gabriel DL, Tamashiro WM, Pastore GM (2012) Yacon (Smallanthus sonchifolius)-derived fructooligosaccharides improves the immune parameters in the mouse. Nutr Res 32(11):884–892. doi:10.1016/j.nutres.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  59. Cherbut C, Michel C, Lecannu G (2003) The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J Nutr 133(1):21–27

    Article  CAS  PubMed  Google Scholar 

  60. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474 (7351):327–336. http://www.nature.com/nature/journal/v474/n7351/abs/10.1038-nature10213-unlocked.html#supplementary-information. Accessed 1 Feb 2017

  61. Tedelind S, Westberg F, Kjerrulf M, Vidal A (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 13(20):2826–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Berni Canani R, Di Costanzo M, Leone L (2012) The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenet 4(1):1–7. doi:10.1186/1868-7083-4-4

    Article  CAS  Google Scholar 

  63. Sanderson IR (2007) Dietary modulation of GALT. J Nutr 137(11):2557s–2562s

    Article  Google Scholar 

  64. Lei Y, Huang K, Gao C, Lau QC, Pan H, Xie K, Li J, Liu R, Zhang T, Xie N, Nai HS, Wu H, Dong Q, Zhao X, Nice EC, Huang C, Wei Y (2011) Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol Cell Proteom 10(10):M110-005397. doi:10.1074/mcp.M110.005397

    Article  CAS  Google Scholar 

  65. Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5(10):816–826

    Article  CAS  PubMed  Google Scholar 

  66. Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134(6):1523–1528

    Article  CAS  PubMed  Google Scholar 

  67. Johansson ME, Sjovall H, Hansson GC (2013) The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10(6):352–361. doi:10.1038/nrgastro.2013.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chaturvedi P, Singh AP, Batra SK (2008) Structure, evolution, and biology of the MUC4 mucin. FASEB J 22(4):966–981. doi:10.1096/fj.07-9673rev

    Article  CAS  PubMed  Google Scholar 

  69. Barnett AM, Roy NC, McNabb WC, Cookson AL (2012) The interactions between endogenous bacteria, dietary components and the mucus layer of the large bowel. Food Funct 3(7):690–699. doi:10.1039/C2fo30017f

    Article  CAS  PubMed  Google Scholar 

  70. Dorofeyev AE, Vasilenko IV, Rassokhina OA, Kondratiuk RB (2013) Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol Res Pract 2013:9. doi:10.1155/2013/431231

    Article  Google Scholar 

  71. Gaudier E, Jarry A, Blottière HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C, Hoebler C (2004) Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 287(6):G1168–G1174. doi:10.1152/ajpgi.00219.2004

    Article  CAS  PubMed  Google Scholar 

  72. Gaudier E, Rival M, Buisine MP, Robineau I, Hoebler C (2009) Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiol Res 58(1):111–119

    CAS  PubMed  Google Scholar 

  73. Haggar FA, Boushey RP (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 22(4):191–197. doi:10.1055/s-0029-1242458

    Article  PubMed  PubMed Central  Google Scholar 

  74. Salles N (2007) Basic mechanisms of the aging gastrointestinal tract. Dig Dis 25(2):112–117

    Article  CAS  PubMed  Google Scholar 

  75. Beserra BT, Fernandes R, do Rosario VA, Mocellin MC, Kuntz MG, Trindade EB (2014) A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr. doi:10.1016/j.clnu.2014.10.004

    Article  PubMed  Google Scholar 

  76. Thumelin S, Forestier M, Girard J, Pegorier JP (1993) Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochem J 292(2):493–496. doi:10.1042/bj2920493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith-Barbaro PA, Hanson D, Reddy BS (1981) Effect of bran and citrus pulp on hepatic, small intestinal and colonic HMG CoA reductase, cytochrome P450 and cytochrome b5 levels in rats. J Nutr 111(5):789–797

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Microarray Laboratory at the Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil for their support in the use of equipment, Fluidics station and Scanner GeneChip. We are grateful to Clariant SA (São Paulo, Brazil) for providing FOS (Orafti® P95). Finally, special thanks are also due to Espaço da Escrita, UNICAMP, Campinas, Brazil who reviewed this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário Roberto Maróstica Junior.

Ethics declarations

Financial support

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant 2010/05681-8 and 2010/16752-3), CAPES, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 300533/2013-6) also provided financial support. Fundação de Amparo à Pesquisa do Estado de São Paulo had no role in the design, analysis or writing of this article.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, G.C., Vieira, V.C.C., Cazarin, C.B.B. et al. Fructooligosaccharide intake promotes epigenetic changes in the intestinal mucosa in growing and ageing rats. Eur J Nutr 57, 1499–1510 (2018). https://doi.org/10.1007/s00394-017-1435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1435-x

Keywords

Navigation