Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms



CaCo-2 colon cancer cells and HepG2 liver cancer cells represent two malignant cell lines, which show a high resistance to apoptosis induced by the conventional anticancer drugs. Vitexin-2-O-xyloside (XVX) and avenanthramides (AVNs) are naturally occurring dietary agents from Beta vulgaris var. cicla L. and Avena sativa L., respectively. The aim of this work was to evaluate the antiproliferative effects and the reduction of the pro-survival mechanisms exerted by XVX and AVNs, used individually and in combination, in CaCo-2 and HepG2 cancer cells.


XVX and AVNs were isolated by liquid chromatography and characterized by HPLC–PDA–MS. The XVX and AVN antiproliferative effects were evaluated through sulforhodamine B method, while their pro-apoptotic effects through caspase activity assays. RTqPCR was used to investigate the modulation of the pro-survival factors baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5), hypoxia inducible factor 1 A (HIF1A), and vascular endothelial growth factor A (VEGFA). Cellular antioxidant activity (CAA) was investigated by means of DCFH-DA assay, whereas chemical antioxidant capacity was evaluated by the ORAC method.


XVX and AVNs, both individually and in combination, inhibited the proliferation of CaCo-2 and HepG2 cancer cells, through activation of caspases 9, 8, and 3. XVX and AVNs downregulated the pro-survival genes BIRC5, HIF1A, and VEGFA. The CAA assay showed that AVNs exhibited strong antioxidant activity inside both CaCo-2 and HepG2 cells.


The antiproliferative activity of the XVX + AVNs mixture represents an innovative treatment, which is effective against two types of cancer cells characterized by high resistance to the conventional anticancer drugs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8





Baculoviral inhibitor of apoptosis repeat-containing 5


Beta vulgaris var. cicla L.


Cellular antioxidant activity


2′,7′-Dichlorodihydrofluorescein diacetate


Hypoxia inducible factor 1 A


High pressure liquid chromatography


Inhibitor of apoptosis proteins


Mass spectrometry


N-Acetyl cysteine


Oxygen radical absorbance capacity


Photo diode array


Sulforhodamine B




Vascular endothelial growth factor




  1. 1.

    Ninfali P, Bacchiocca M, Antonelli A, Biagiotti E, Di Gioacchino AM, Piccoli G, Stocchi V, Brandi G (2007) Characterization and biological activity of the main flavonoids from Swiss Chard (Beta vulgaris subspecies cycla). Phytomedicine 14:216–221

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Ninfali P, Angelino D (2013) Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 89:188–199

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Gennari L, Felletti M, Blasa M, Angelino D, Celeghini C, Corallini A, Ninfali P (2011) Total extract of Beta vulgaris var. cicla seeds versus its purified phenolic components: antioxidant activities and antiproliferative effects against colon cancer cells. Phytochem Anal 22:272–279

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Papi A, Farabegoli F, Iori R, Orlandi M, De Nicola GR, Bagatta M, Angelino D, Gennari L, Ninfali P (2013) Vitexin-2-0-xyloside, raphasatin and (–)-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells. Food Chem 138:1521–1530

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Farabegoli F, Scarpa ES, Frati A, Serafini G, Papi A, Spisni E, Antonini E, Benedetti S, Ninfali P (2017) Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells. Food Chem 218:356–364

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Peterson DM (2001) Oat antioxidants. J Cereal Sci 33:115–129

    Article  CAS  Google Scholar 

  7. 7.

    Collins FW (1989) Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem 37:60–66

    Article  CAS  Google Scholar 

  8. 8.

    Antonini E, Lombardi F, Alfieri M, Diamantini G, Redaelli R, Ninfali P (2016) Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. J Cereal Sci 72:46–53

    Article  CAS  Google Scholar 

  9. 9.

    Skoglund M, Peterson DM, Andersson R, Nilsson J, Dimberg LH (2008) Avenanthramide content and related enzyme activities in oats as affected by steeping and germination. J Cereal Sci 48:294–303

    Article  CAS  Google Scholar 

  10. 10.

    Xu JG, Tian CR, Hu QP, Luo JY, Wang XD, Tian XD (2009) Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. J Agric Food Chem 57:10392–10398

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Chen CY, Milbury PE, Kwak HK, Collins FW, Samuel P, Blumberg JB (2004) Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J Nutr 134:1459–1466

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Chen CYO, Milbury PE, Collins FW, Blumberg JB (2007) Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J Nutr 137:1375–1382

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Koenig RT, Dickman JR, Wise ML, Ji LL (2011) Avenanthramides are bioavailable and accumulate in hepatic, cardiac, and skeletal muscle tissue following oral gavage in rats. J Agric Food Chem 59:6438–6443

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Meydani M (2009) Potential health benefits of avenanthramides of oats. Nutr Rev 67:731–735

    Article  PubMed  Google Scholar 

  15. 15.

    Guo WM, Nie L, Wu DY, Wise ML, Collins FW, Meydani SN, Meydani M (2010) Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr Cancer 62:1007–1016

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37:605–617

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Samali A, Jager R (2014) Mechanisms of resistance to cell death pathways in cancer cells. In: McManus LM, Mitchell RN (eds) Pathobiology of human disease, 1st edn. Elsevier Inc., Atlanta, pp 393–402

    Google Scholar 

  18. 18.

    Altieri DC (2013) Targeting survivin in cancer. Cancer Lett 332:225–228

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Johnson ME, Howerth EW (2004) Survivin: a bifunctional inhibitor of apoptosis protein. Vet Pathol 41:599–607

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  21. 21.

    Gomez-Roman N, Sahasrabudhe NM, McGregor F, Chalmers AJ, Cassidy J, Plumb J (2016) Hypoxia-inducible factor 1 alpha is required for the tumourigenic and aggressive phenotype associated with Rab25 expression in ovarian cancer. Oncotarget 7:22650–22664

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    Article  PubMed  Google Scholar 

  23. 23.

    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor-1 is a basic-helix–loop–helix-pas heterodimer regulated by cellular O-2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Baba Y, Nosho K, Shima K, Irahara N, Chan AT, Meyerhardt JA, Chung DC, Giovannucci EL, Fuchs CS, Ogino S (2010) HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 176:2292–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ferrara N (2005) VEGF as a therapeutic target in cancer. Int Soc Cell 69:11–16

    CAS  Google Scholar 

  26. 26.

    Ellis LM, Takahashi Y, Liu W, Shaheen RM (2000) Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist 5:11–15

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Doll JA, Hobbs JE, Soff JA (2007) Role of apoptosis in anti-angiogenic cancer therapies. In: Gewirtz DA, Holt SE, Grant S (eds) Apoptosis and senescence in cancer chemotherapy and radiotherapy, 2nd edn. Humana Press, Totowa, pp 537–555

    Google Scholar 

  28. 28.

    Piccirillo S, Filomeni G, Brune B, Rotilio G, Ciriolo MR (2009) Redox mechanisms involved in the selective activation of Nrf2-mediated resistance versus p53-dependent apoptosis in adenocarcinoma cells. J Biol Chem 284:27721–27733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Heo SH, Kwak J, Jang KL (2015) All-trans retinoic acid induces p53-dependent apoptosis in human hepatocytes by activating p14 expression via promoter hypomethylation. Cancer Lett 362:139–148

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Ye RP, Chen ZD (2017) Saikosaponin A, an active glycoside from Radix bupleuri, reverses P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and HepG2/ADM cells. Xenobiotica 47:176–184

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Liu LP, Zubik L, Collins FW, Marko M, Meydani M (2004) The antiatherogenic potential of oat phenolic compounds. Atherosclerosis 175:39–49

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Ninfali P, Gennari L, Biagiotti E, Cangi F, Mattoli L, Maidecchi A (2009) Improvement in botanical standardization of commercial freeze-dried herbal extracts by using the combination of antioxidant capacity and constituent marker concentrations. J AOAC Int 92:797–805

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang Y, Tang Q, Jiang S, Li M, Wang X (2013) Anti-colorectal cancer activity of macrostemonoside A mediated by reactive oxygen species. Biochem Biophys Res Commun 441:825–830

    Article  CAS  Google Scholar 

  35. 35.

    Scarpa ES, Emanuelli M, Frati A, Pozzi V, Antonini E, Diamantini G, Di RG, Sartini D, Armeni T, Palma F, Ninfali P (2016) Betacyanins enhance vitexin-2-O-xyloside mediated inhibition of proliferation of T24 bladder cancer cells. Food Funct 7:4772–4780

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Peterson DM, Hahn MJ, Emmons CL (2002) Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem 79:473–478

    Article  CAS  Google Scholar 

  37. 37.

    Khan N, Adhami VM, Mukhtar H (2008) Apoptosis by dietary agents for prevention and treatment of cancer. Biochem Pharmacol 76:1333–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Huang H, Chen AY, Rojanasakul Y, Ye X, Rankin GO, Chen YC (2015) Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J Funct Foods 15:464–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Angelino D, Berhow M, Ninfali P, Jeffery EH (2013) Caecal absorption of vitexin-2-O-xyloside and its aglycone apigenin, in the rat. Food Funct 4:1339–1345

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci USA 99:715–720

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Zhang Y, Zhao W, Zhang HJ, Domann FE, Oberley LW (2002) Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res 62:1205–1212

    CAS  PubMed  Google Scholar 

  43. 43.

    Ueda S, Nakamura H, Masutani H, Sasada T, Takabayashi A, Yamaoka Y, Yodoi J (2002) Baicalin induces apoptosis via mitochondrial pathway as prooxidant. Mol Immunol 38:781–791

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Ismail N, Alam M (2001) A novel cytotoxic flavonoid glycoside from Physalis angulata. Fitoterapia 72:676–679

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure–activity relationships. Free Radic Biol Med 22:749–760

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Choi HJ, Eun JS, Kim BG, Kim SY, Jeon H, Soh Y (2006) Vitexin, an HIF-1alpha inhibitor, has anti-metastatic potential in PC12 cells. Mol Cells 22:291–299

    CAS  PubMed  Google Scholar 

  47. 47.

    Ma J, Feng Y, Liu Y, Li X (2016) PUMA and survivin are involved in the apoptosis of HepG2 cells induced by microcystin-LR via mitochondria-mediated pathway. Chemosphere 157:241–249

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Harris IS, Brugge JS (2015) Cancer: the enemy of my enemy is my friend. Nature 527:170–171

    Article  CAS  PubMed  Google Scholar 

Download references


We acknowledge the financial support of University of Urbino “Carlo Bo”. The authors wish also to thank: Terra Bio Soc. Coop. (Urbino, Italy) and Suba Seeds Company S.p.A. (Longiano, Italy) for providing oat grains and Beta vulgaris var. cicla L. seeds, respectively. Timothy Bloom is acknowledged for assistance in the English language.

Author information



Corresponding author

Correspondence to Paolino Ninfali.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 150 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scarpa, E.S., Antonini, E., Palma, F. et al. Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. Eur J Nutr 57, 1381–1395 (2018).

Download citation


  • Apoptosis
  • Avenanthramides
  • CaCo-2 colon cancer cells
  • Cellular antioxidant activity
  • HepG2 liver cancer cells
  • Vitexin-2-O-xyloside